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1 Introduction

Under the monetary policy regime known as “inflation targeting,” a central bank
explicitly announces a quantitative inflation target that it commits to achieve over some
time horizon, usually the medium or the long term.1 Although there is much consensus on
what the level or the range of the inflation target should be,2 central banks and researchers
diverge on from which price index the inflation target should be calculated. Common
choices include variants of “core” inflation, which exclude prices in certain categories in
computing the overall inflation rate.3 For instance, before the Federal Reserve (the Fed)
announced an explicit inflation target of 2% as measured by the annual change in the price
index for personal consumption expenditures (PCE) on January 25, 2012, the core PCE
inflation rate, which is the PCE inflation rate computed without food and energy prices,4
was favored by the Fed, though not explicitly targeted.5

In this paper, I develop a multisector New Keynesian dynamic stochastic general equi-
librium (DSGE) model to assess in a structural approach whether exclusion of prices in
certain categories in forming the price index for inflation targeting can be desirable in
terms of welfare. Traditional arguments in defense of core inflation measures for inflation
targeting usually involve that the prices excluded from core inflation measures tend to
be more volatile and contain more transitory noises rather than signals of movements in
underlying or trend inflation.6 These arguments are often based on statistical properties
of the prices being excluded from core inflation measures and mostly do not provide a
structural explanation to why the particular excluded prices should be excluded. On the
other hand, some studies (e.g., Aoki 2001, Mankiw and Reis 2003, Bodenstein et al. 2008)
tried to provide theoretical or empirical evidence on the “why” question in terms of welfare
in structural approaches. Findings of these studies generally supported the use of core
inflation measures for inflation targeting.

Amajor finding of this paper is that the inflation rates in the sector of food and beverages
purchased for off-premises consumption and the sector of housing and utilities are assigned
large positive weights in the central bank’s welfare-maximizing index of overall inflation,
while the inflation rates in the other sectors are mostly assigned small-to-negligible or
even negative weights. This finding suggests that the Fed should focus on prices in only
a handful of categories when responding to inflation. Why these two sectors? A possible

1See, e.g., Hammond (2012).
2All inflation-targeting industrialized countries have adopted targets in the range of 1–3% according

to Hammond (2012).
3The set of prices being excluded may be not fixed over time. For instance, the Federal Reserve Bank of

Dallas calculates a trimmed mean personal consumption expenditures (PCE) inflation rate, in which the prices
being excluded may vary from one period to another. See Dolmas (2005).

4Formally, it is the inflation rate implied by the price index for PCE excluding food and energy, which is
composed by the US Bureau of Economic Analysis (BEA).

5See Mishkin (2007) and Wynne (2008).
6See, among others, Mishkin (2007), Wynne (2008), and Bullard (2011).
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explanation is that pricemovements in these two sectors containmore signaling information
on aggregate shocks, which is useful for the central bank to conduct monetary policy, than
price movements in the other sectors do, largely because the sector-specific components of
the price markup shocks in the two sectors have relatively small standard deviations. This
result is consistent with Mankiw and Reis’s (2003) finding that sectors with smaller-sized
idiosyncratic shocks should receive larger weights in the central bank’s optimal stability
price index. It also supports the traditional “signal–noise” logic behind the use of core
inflation for inflation targeting.

Interestingly, the central bank may optimally assign negative weights to the inflation
rates in the sectors with the stickiest prices, which means that monetary policy actions in
these sectors would be inflationary rather than disinflationary. Such unconventional policy
actions may be motivated from the perspective of inflation stabilization. When prices in a
sector are very sticky, they are unresponsive to monetary policy shocks and therefore may
be exploited to tolerate some inflationary policy actions in exchange for more aggressive
responses to the sectoral inflation rates that contain more information on aggregate shocks.

To accomplish the goal of this paper requires a multisector model that incorporates
sectoral heterogeneities. Many recent New Keynesian DSGE models built for the US
economy in the literature (e.g., Christiano et al. 2005, Smets and Wouters 2007) have
been single-sector models abstracting from intricacies at the disaggregate level—such as
heterogeneity in price stickiness across segments of the economy. However, heterogeneities
exist in real-world economies,7 and more importantly, their presence has implications for
monetary policy analysis in New Keynesian models. For instance, a number of studies (e.g.,
Carvalho 2006, Dixon and Kara 2010, Nakamura and Steinsson 2010, Pasten et al. 2016)
showed theoretically and/or empirically that monetary policy shocks tended to have larger
and/or more persistent effects on aggregate inflation and/or on the real economy when
heterogeneity in price stickiness was introduced.

Moreover, relative prices of goodsusuallyplaynofirst-order role in a typical single-sector
model. Yet, Reis and Watson (2010) emphasized the quantitative importance of relative
prices in accounting for variability of aggregate inflation and in generating the Phillips
correlation between nominal inflation and the real variables. In addition, a number of
studies demonstrated heterogenous responses of disaggregate prices and sectoral inflation
rates to aggregate shocks, particularly monetary policy shocks (see e.g., Boivin et al. 2009,
Nakajima et al. 2010, Baumeister et al. 2013), which would exert an important influence on
relative prices (see e.g., Lastrapes 2006, Balke and Wynne 2007).

I extend the single-sector model by Smets and Wouters (2007) to incorporate sectoral
heterogeneities, including differential sector sizes and sector-specific price stickiness, price

7Numerous studies (e.g., Bils and Klenow 2004, Klenow and Kryvtsov 2008, Nakamura and Steinsson 2008)
have documented using micro data tremendous heterogeneity in the frequency of price change (i.e., price
stickiness) across goods in the US economy. See, e.g., Altissimo et al. (2006) and Dhyne et al. (2006) for the euro
area.
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markups, degrees of price indexation, and idiosyncratic price markup shocks. A first-order
role of relative prices arises in equilibrium inflation dynamics as a result of the introduction
of sectoral heterogeneities. The multisector model also links fluctuations in sectoral real
activities to movements in sectoral relative prices and shows that the sectors in which the
price levels fall less are the sectors in which the output levels fall more in the face of a
contractionary monetary policy shock. Boivin et al. (2009) estimated a factor-augmented
vector autoregression (FAVAR) and found a negative cross-sectional relationship between
the responses of PCE prices and those of PCE quantities to a contractionarymonetary policy
shock. The multisector model in this paper potentially provides a structural explanation to
Boivin et al.’s aforementioned finding.

I estimate a 12-sector version of the model using Bayesian techniques with quarterly US
data spanning the period of 1985Q1–2015Q4. Sectors are identified mostly by third-level
disaggregate categories underlying PCE. The estimated model is generally capable of
qualitatively explaining the cross-sectional difference in sectoral price stickiness evidenced
by the micro data on frequency of price change collected by Bils and Klenow (2004). The
estimates suggest that the Fed did not respond to changes in the prices of gasoline and other
energy goods or changes in the price of health care over the sample period. On the other
hand, the Fed seemed to target an index of overall inflation consisted of sectoral inflation
rates in sectors other than the energy sector or the health care sector, weighted by sectoral
consumption expenditure shares but with a relatively higher weight on the inflation rate
in the sector of housing and utilities. Since the estimated weight of the inflation rate in the
food sector is non-zero, the Fed did respond to changes in food price as opposed to what a
central bank targeting core inflation excluding food and energy inflation would have done.

Forwelfare evaluation, I attempt to approximate welfare of the representative household
via simulation. The welfare gains achieved by moving to targeting an optimal index of
overall inflation turn out to be small, suggesting that the current inflation target adopted by
the Fed is almost indistinguishable from the optimal one in terms of welfare. On the other
hand, I find that more aggressive targeting of the output gap can offer much larger welfare
gains.

This study is related to Aoki (2001), Mankiw andReis (2003), and Bodenstein et al. (2008).
The three studies all considered optimal monetary policy in economies with heterogenous
sectors. This study, however, differs from the three aforementioned studies in several
aspects. First, this study is based on a fully estimated structural model, while the three
aforementioned studieswere basedon eithernon-estimated structuralmodels or a (partially)
estimated reduced-form model. Second, this study includes a total of twelve heterogenous
sectors, while the three aforementioned studies included up to four heterogenous sectors.
Third, no sector in this study has completely flexible prices, while the three aforementioned
studies each included at least one sector with completely flexible prices. Forth, this study
focuses on optimizing the composition of the index of overall inflation to be targeted by the

3



central bank, while the three aforementioned studies considered optimal monetary policy
in general.8

2 The Model Economy

The model in this paper is heavily based on the one by Smets and Wouters (2007), and
the multisector setup is related to that by Carvalho and Lee (2011). The model economy
comprises households, a labor packer, a final-composite-good producer, sectoral-composite-
good producers, intermediate-good producers, a government, and a central bank. The
model economy follows a balanced growth path, along which the growth rate is γ > 1. I
assume that only the consumption-good market but not the labor or the capital market is
segmented into S sectors. In this section I describe the behavior of each participant in model
economy, the market clearing conditions, and the resource constraint. Complete derivation
of the equations characterizing the equilibrium and the log-linearized system is included
in a separate appendix.9

2.1 Intermediate-good producers

Assume a continuum of intermediate-good producers indexed by (s , j), where the
first index s � 1, . . . , S identifies the sector and the second index j ∈ (0, 1) identifies the
particular producer.10 The set Js collects the indices of the intermediate-good producers in
sector s and has a measure of ωs , which is the defined size of sector s. The index sets satisfy⋃S

s�1 Js � (0, 1) so that
∑S

s�1 ωs � 1.
In period t, intermediate-good producer (s , j) (s � 1, . . . , S, j ∈ Js) hires Lt(s , j) units of

composite labor through the labor market at the aggregate wage Wt and rents Kf
t(s , j) units

of capital from the households at the rental rate Rk
t to produce a differentiated intermediate

good (s , j) using a labor-augmented Cobb–Douglas technology with a fixed cost:

Yt(s , j) � max
{
εa

t [Kf
t(s , j)]α[γt Lt(s , j)]1−α − γtΨs , 0

}
,

where Yt(s , j) is the quantity of intermediate good (s , j) produced, εa
t > 0 is an exogenous

shock to the total factor productivity, α ∈ (0, 1) is the output elasticity of capital, andΨs > 0

8Mankiw and Reis (2003) started from considering the optimal monetary policy but then focused on output
gap stabilization.

9Available upon request.
10In fact a single index j is sufficient to identify a particular intermediate-good producer and s � s( j) can be

a function of the index j. Nonetheless, I use (s , j) to show explicitly the sector.
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is a fixed cost.11 The period-t profit of intermediate-good producer (s , j) is given by

∆
y
t (s , j) � Pt(s , j)Yt(s , j) −Wt Lt(s , j) − Rk

t Kf
t(s , j),

where Pt(s , j) is the price of Yt(s , j).
Since the intermediate-good producers produce differentiated goods, they have monop-

olistic power in their respective product markets. The intermediate-good producers set
prices à la Calvo (1983) but with partial indexation. Intermediate-good producer (s , j) can
re-optimize its price and set a new one P∗t (s , j) only when it receives a random signal of
probability 1 − θp(s) ∈ (0, 1); otherwise it adjusts its price according to the indexation rule

Pt(s , j) � Pt−1(s , j)πιp(s)t−1 π
1−ιp(s) ,

where πt−1 � Pt−1/Pt−2 is the last period’s inflation rate, π is the steady-state inflation
rate, and ιp(s) ∈ [0, 1] is the degree of dynamic price indexation in sector s. Let Dp

t (s) �
π
ιp(s)
t π1−ιp(s) so that the price indexation rule is Pt(s) � Pt−1(s)Dp

t−1(s). Let Dp
t ,t+τ(s) �∏τ

d�0 Dp
t+d(s).

When intermediate-good producer (s , j) gets the opportunity to re-optimize its price, it
chooses a new price P∗t (s , j) to maximize the expected discounted future profit in the case
that P∗t (s , j)will remain effective forever, i.e.,

max
P∗t (s , j)

Et

∞∑
τ�0

θp(s)τMt ,t+τ(P∗t (s , j)Dp
t ,t+τ−1(s) −MCt+τ)Yt+τ |t(s , j),

where Mt ,t+τ is a stochastic discount factor and MCt+τ is the nominal marginal cost of
production in period t + τ,12 subject to the demand schedule implied by sectoral output
aggregation (to be described shortly), i.e.,

Yt+τ |t(s , j) � 1
ωs

(
P∗t (s , j)Dp

t ,t+τ−1(s)
Pt+τ(s)

)−(1+εp
t+τ(s))/ε

p
t+τ(s)

Yt+τ(s),

where εp
t+τ(s) > 0 is an exogenous shock to the sector-s price markup in period t + τ.

In any period, a proportion of 1 − θp(s) of sector-s intermediate-good producers reset
their priceswhile the rest index their prices. Given the nature of the sectoral price aggregator

11I assume that the parameters Ψs , s � 1, . . . , S, which are non-identifiable individually in subsequent
estimation, are such that the production level of any intermediate-good producer is always positive in the
neighborhood of the steady state. Nonetheless, the model is to be parameterized such that the aggregate
production level being zero is (almost) impossible in the neighborhood of the steady state.

12It can be shown that the marginal cost of production is independent of the producer. See the appendix.
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(to be described shortly), the law of motion of the sectoral price level Pt(s) is given by

Pt(s) �
[
(1 − θp(s))

(
P∗t (s)

)−1/εp
t (s) + θp(s)

(
Pt−1(s)Dp

t−1(s)
)−1/εp

t (s)
]−εp

t (s)
.

2.2 Sectoral-composite-good producers

Assume in each sector a sectoral-composite-good producer who purchases Yt(s , j) units
of intermediate good from intermediate-good producer (s , j) at the price Pt(s , j), produces
Yt(s) units of sector-s composite good, and then sells the composite good for the price Pt(s)
(s � 1, . . . , S, j ∈ Js). Taking Pt(s) and {Pt(s , j)} j∈ Js as given, the sector-s composite-good
producer chooses Yt(s) and {Yt(s , j)} j∈ Js in each period to maximize its profit

Pt(s)Yt(s) −
∫

Js

Pt(s , j)Yt(s , j) d j

subject to the constant elasticity of substitution (CES) aggregator

Yt(s) � ω
−εp

t (s)
s

[∫
Js

Yt(s , j)1/(1+ε
p
t (s)) d j

]1+εp
t (s)

.

The implied demand for intermediate good (s , j) given sectoral demand Yt(s) is

Yt(s , j) � ω−1
s

(
Pt(s , j)
Pt(s)

)−(1+εp
t (s))/ε

p
t (s)

Yt(s),

and sectoral price aggregation is given by

Pt(s) �
(
ω−1

s

∫
Js

Pt(s , j)−1/εp
t (s) d j

)−εp
t (s)

.

2.3 The final-composite-good producer

Assume a final-composite-good producer who purchases Yt(s) units of sector-s com-
posite good at the price Pt(s) (s � 1, . . . , S) and produces Yt units of final composite good
for the price Pt . Pt is the period-t aggregate price level. Taking Pt and {Pt(s)}Ss�1 as given,
the final-composite-good producer chooses Yt and {Yt(s)}Ss�1 in each period to maximize
its profit

PtYt −
S∑

s�1
Pt(s)Yt(s)
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subject to the CES aggregator

Yt �

(
S∑

s�1
ωνs Yt(s)1−ν

)1/(1−ν)

,

where ν > 0 is (the absolute value of) the inverse of the elasticity of substitution across
sectoral composite goods. The implied demand for sector-s composite good given aggregate
demand Yt is

Yt(s) � ωs

(
Pt(s)

Pt

)−1/ν
Yt , (1)

and implied price aggregation is given by

Pt �

[
S∑

s�1
ωsPt(s)(ν−1)/ν

] ν/(ν−1)

. (2)

Note that when ν → 0, the sectoral composite goods tend to become perfect substitutes
of each other, which obscures the difference between sectors. As a result, the multisector
model collapses to a single-sector one as ν→ 0.

Define the sectoral relative prices

ϕt(s) �
Pt(s)

Pt
, s � 1, . . . , S,

and the sectoral inflation rates

πt(s) �
Pt(s)

Pt−1(s)
�

ϕt(s)
ϕt−1(s)

πt , s � 1, . . . , S. (3)

2.4 Households

Assume a continuum of infinitely lived households indexed by i ∈ (0, 1). In period t,
household i purchases final composite consumption good Ct(i) at the price Pt , investment
good It(i) at the price Pt to accumulate capital Kt+1(i), and one-period discount bond Bt+1(i)
with the nominal interest rate Rt and an exogenous stochastic risk premium εb

t > 0. House-
holds rent capital stock to intermediate-good producers, which households own. The
effective amount of capital that household i rents out in period t is Kf

t(i) � Zt(i)Kt(i), where
Zt(i) is the level of capital utilization set by the household. Household i earns Rk

t Zt(i)Kt(i)
from capital rental and incurs a cost PtSz(Zt(i))Kt(i) in setting the utilization level, where
Sz(·) is a cost function (described below). In addition, household i supplies differentiated
labor Lt(i) at the wage Wh

t (i), earns Bt(i) from last period’s bond, and receives lump-sum
transfer net of lump-sum tax PtTt(i) from the government, profit ∆y

t (i) from intermediate-
good producers, and dividend ∆l

t(i) from the labor packer.
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Household i’s intertemporal budget constraint is given by

Pt Ct(i) + Pt It(i) +
Bt+1(i)
Rt/εb

t

+ PtSz(Zt(i))Kt(i)

≤ Wh
t (i)Lt(i) + Rk

t Zt(i)Kt(i) + Bt(i) + PtTt(i) + ∆y
t (i) + ∆

l
t(i).

The law of motion of household i’s capital stock is given by

Kt+1(i) � (1 − δ)Kt(i) + εi
t

(
1 − Si

(
It(i)

It−1(i)

))
It(i),

where δ ∈ (0, 1) is the depreciation rate, εi
t > 0 is an exogenous shock to marginal efficiency

of investment (MEI), and Si(·) is an investment adjustment cost function (described below).
Given the initial bond holding B0(i), the initial capital stock K0(i), and pre-period-0

average consumption C−1 and taking {Ct , Pt , Rt ,Wh
t (i), Rk

t , Tt(i),∆y
t (i),∆l

t(i)}∞t�0 as given,
household i chooses {Ct(i), Lt(i), Bt+1 , It(i), Zt(i)}∞t�0 to maximize the expected lifetime
utility

E0

∞∑
t�0

βtUt(i)

subject to the intertemporal budget constraint and the law of motion of capital stock. The
period utility function Ut(i) defined as

Ut(i) �
1

1 − σc

(
Ct(i) − hCt−1

)1−σc
exp

(
−1 − σc

1 + σl
χLt(i)1+σl

)
,

where β ∈ (0, 1) is the subjective discount factor, σc > 0 is the inverse of the elasticity of
intertemporal substitution (EIS) of consumption, h ∈ (0, 1) is a habit parameter, χ > 0
measures the relative disutility of labor supply, and σl > 0 is the inverse of Frisch elasticity
of labor supply.

The functional form of Sz(·) is13

Sz(Z) �
rk

σz [exp(σz(Z − 1)) − 1],

such that Sz(1) � 0, S′z(1) � rk and S′′z (1) � rkσz , where rk is the steady-state real rental rate
of capital and σz > 0 is a curvature parameter. The functional form of Si(·) is

Si(x) �
1
2

[
exp

(√
S′′i (x − x)

)
+ exp

(
−
√

S′′i (x − x)
)]
− 1,

where x � It(i)/It−1(i) and x � γ is the steady state of x, such that Si(γ) � S′i(γ) � 0

13The functional forms of Sz(·) and Si(·) are borrowed from Christiano et al. (2014). The log-linearized
system (derived in the appendix) and the equilibrium dynamics in the neighborhood of the steady state do not
depend on particular functional forms but do depend on the curvature parameters σz and S′′i .
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and S′′i (γ) � S′′i , where S′′i > 0 is a curvature parameter. For estimation purpose, I re-
parameterize σz and S′′i as

σz
�

κz

1 − κz
and S′′i �

κi

1 − κi
,

where κz ∈ (0, 1) and κi ∈ (0, 1) are two replacement parameters. It is shown in the appendix
that, as κz → 1, changing the level of capital utilization tends to be more costly, and thus
the equilibrium level of capital utilization tends to remain constant; on the other hand, as
κz → 0, changing the level of capital utilization tends to be less costly, and the equilibrium
capital rental rate, which is the marginal cost of setting the utilization level, tends to remain
constant. Similarly, as κi → 1, adjusting investment tends to be more costly, and thus the
equilibrium level of investment tends to remain constant; on the other hand, as κi → 0,
adjusting investment tends to be less costly, and thus the equilibrium price of capital tends
to remain constant.

2.5 The labor packer

Since the households supply differentiated labor, they have monopolistic power in the
market of their own labor. Assume a labor packer that aggregates individual labor supplies
and delegates negotiation of the wage rates.

The labor packer uses a CES aggregator to form composite labor Lt from differentiated
labor {Lt(i)}i∈(0,1) supplied by the households:

Lt �

[∫ 1

0
Lt(i)1/(1+ε

w
t ) di

]1+εw
t

, (4)

where εw
t > 0 is an exogenous shock to the period-t wage markup. The labor packer then

sells composite labor to intermediate-good producers in a perfectly competitive market.
Given aggregate labor demand Lt , the demand for household i’s labor is determined by

Lt(i) �
(

Wt(i)
Wt

)−(1+εw
t )/εw

t

Lt , (5)

where Wt(i) is the market wage rate for household i’s labor and Wt is the aggregate wage
rate given by

Wt �

(∫ 1

0
Wt(i)−1/εw

t di
)−εw

t

. (6)

The labor packer sets wages in a way analogous to the intermediate-good producers
setting their prices. Specifically, the labor packer can re-optimize and set a new wage W ∗t (i)
for household i’s labor only when it receives a random signal of probability 1 − θw ∈ (0, 1);
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otherwise it adjusts the wage according to the indexation rule

Wt(i) � Wt−1(i)γπιwt−1π
1−ιw ,

where ιw ∈ [0, 1] is the degree of dynamic wage indexation. Let Dw
t � γπιwt π

1−ιw so that
the wage indexation rule is Wt � Wt−1Dw

t−1. Let Dw
t ,t+τ �

∏τ
d�0 Dw

t+d .
When the laborpacker gets the opportunity to re-optimize household i’s wage, it chooses

a new wage W ∗t (i) to maximize household i’s expected future utility in the case that the
new wage will remain effective forever, i.e.,

max
W∗t (i)

Et

∞∑
τ�0
(βθw)τUt+τ |t(i),

where the subscript “t + τ |t” indicates a variable in period t + τ conditional on that the
wage rate was last re-optimized in period t, subject to the intertemporal budget constraint

Pt+τCt+τ |t(i) + Pt+τIt+τ |t(i) +
Bt+τ+1|t(i)
Rt+τ/εb

t+τ

+ Pt+τSz(Zt+τ |t(i))Kt+τ |t(i)

≤ W ∗t (i)Dw
t ,t+τ−1Lt+τ |t(i) + Rk

t+τZt+τ |t(i)Kt+τ |t(i) + Bt+τ |t(i) + Pt+τTt+τ(i) + ∆y
t+τ(i),

τ � 0, 1, 2, . . . ,

and the labor demand schedule implied by (5), i.e.,

Lt+τ |t(i) �
(

W ∗t (i)Dw
t ,t+τ−1

Wt+τ

)−(1+εw
t+τ)/εw

t+τ

Lt+τ .

In any period, the labor packer resets the wages of a proportion of 1 − θw of the
households and at the same time indexes the wages of the remaining households. Given
the nature of the wage aggregator (6), the law of motion of the aggregate wage Wt is given
by

Wt �

[
(1 − θw)

(
W ∗t

)−1/εw
t + θw

(
Wt−1Dw

t−1
)−1/εw

t
]−εw

t
.

2.6 The government

In period t, the government purchases final composite consumption good Gt at the
price Pt for exogenous spending, pays Bt for the bonds issued in the last period, transfers
Tt (net of taxes) to the households, and issues new discount bonds Bt+1/(Rt/εb

t ). Here
Bt �

∫ 1
0 Bt(i) di is the aggregate bond holding and Tt �

∫ 1
0 Tt(i) di is the aggregate transfer.

The intertemporal budget constraint of the government is

Pt Gt + Bt + PtTt �
Bt+1

Rt/εb
t

,
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with B0 given. I assume
ε
1

t � Gt/γt > 0

to be the exogenous government spending shock.

2.7 The central bank

The central bank responds to inflation and the output gap, which is the difference
between the actual output and the natural (or the potential) output. The natural output is
defined as the level of output in the economy with flexible wage and prices (θw � θp(s) � 0,
for all s � 1, . . . , S) andwith thewage and the pricemarkup shocks shut down (εw

t � εw and
ε

p
t (s) � ε

p(s), for all s � 1, . . . , S and t � 0, 1, 2, . . .). The central bank uses the interest rate
as the policy instrument. Since there are multiple sectors and thus multiple inflation rates
including the aggregate inflation rate and S sectoral inflation rates, the central bank’s policy
can vary as selection of the inflation rates to which the central bank responds varies or as
the strength of responses varies. I consider a single-inflation-target scheme in which the
central bank chooses to respond to the aggregate inflation rate and a multi-inflation-target
scheme in which the central bank chooses to respond to individual sectoral inflation rates.

For convenience I specify the monetary policy schemes in log-linearized forms. Let
x̂t � (xt − x)/x ≈ ln(xt/x) denote the relative deviation of the variable xt from its steady
sate x, which is approximately the logarithmic deviation. Under the single-inflation-target
scheme, the central bank follows a generalized Taylor (1993) rule:

R̂t � ρr R̂t−1 + (1 − ρr)
[
ρππ̂t + ρx( ŷt − ŷn

t )
]
+ ε̂r

t , (7)

where ŷn
t is the (log deviation of detrended) natural output, ρr ∈ (0, 1) is a policy smoothing

parameter, ρπ > 1 measures the strength of the central bank’s response to aggregate
inflation, ρx > 0 measures the strength of the central bank’s response to the aggregate
output gap, and εr

t > 0 is an exogenous monetary policy shock.
Under the multi-inflation-target scheme, the central bank follows

R̂t � ρr R̂t−1 + (1 − ρr)
[

S∑
s�1

ρπ(s)π̂t(s) + ρx( ŷt − ŷn
t )

]
+ ε̂r

t , (8)

where ρπ(s) (s � 1, . . . , S) is the strength of the central bank’s response to sector-s inflation.
Scheme (8) is a relaxation of scheme (7). The term

∑S
s�1 ρπ(s)π̂t(s) in the bracket in (8) can

be re-parameterized as

ρ∗π

S∑
s�1
(1 + ρ∗∗π (s))ω∗s π̂t(s), (9)
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where ρ∗π > 1,
S∑

s�1
(1 + ρ∗∗π (s))ω∗s � 1, (10)

and ω∗s � ωsϕ(s)(ν−1)/ν such that
∑S

s�1 ω
∗
s � 1 (following from (2)). Let

ρ∗π(s) � (1 + ρ∗∗π (s))ω∗s , s � 1, . . . , S.

Since π̂t(s) �
∑S

s�1 ω
∗
s π̂t(s), {ω∗s}Ss�1 can be interpreted as the “natural” weights of

sectoral inflation rates {π̂t(s)}Ss�1 in the aggregate inflation rate π̂t . Thus, themulti-inflation-
target scheme can also bemotivated by that the central bank is composing an index of overall
inflation with weights on sectoral inflation rates possibly different than the natural ones
that arise when targeting the aggregate inflation rate. With re-parameterization (9), ρ∗π
can be interpreted as the strength of the central bank’s overall response to target inflation,
while {ρ∗π(s) � (1 + ρ∗∗π (s))ω∗s}Ss�1 can be interpreted as the sectoral weights, and ρ∗∗π (s) > 0
(ρ∗∗π (s) < 0; s � 1, . . . , S) indicates that the weight on sector-s inflation π̂t(s) in the central
bank’s target inflation index is more (less) than its natural weight.

Denote the model equipped with the single-inflation-target scheme by M1 and the
model equipped with the multi-inflation-target scheme by M2.

2.8 Market clearing and the resource constraint

The economy-wide aggregate labor demand is the sum of sectoral labor demands and
meets the aggregate labor supply defined in (4):

Lt �

S∑
s�1

Lt(s) �
S∑

s�1

∫
Js

Lt(s( j), j) d j �
∫ 1

0
Lt(s( j), j) d j,

where Lt , Lt(s), and Lt(s , j) (s � 1, . . . , S, j ∈ (0, 1)) are all in units of composite labor. The
economy-wide aggregate capital demand is the sum of capital rented by intermediate-good
producers in all sectors and meets the aggregate capital stock that is accumulated by the
households and available for rental:

Kf
t �

S∑
s�1

Kf
t(s) �

S∑
s�1

∫
Js

Kf
t(s , j) d j �

∫ 1

0
Kf

t(s( j), j) d j �
∫ 1

0
Kf

t(i) di.

Thegovernment clears the bondmarket. Clearing of the consumption-goodmarkets requires
that for each good produced in the economy the quantity supplied equals the sum of the
quantities demanded for consumption, investment, setting the level of capital utilization,
and government spending. The economy’s resource constraint is given by

Ct + It + Sz(Zt)Kt + Gt � Yt .
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2.9 Exogenous shocks

A total of seven types of exogenous shocks are included in the model economy: a
risk premium shock εb

t ; a shock to MEI εi
t ; a technology shock εa

t ; sectoral price markup
shocks εp

t (s), s � 1, . . . , S; a wage markup shock εw
t ; a government spending shock ε1t ;

and a monetary policy shock εr
t . For estimation purpose I scale some of the shocks (see

the appendix for more detail).14 The symbols for scaled shocks, innovations, and variance
(or standard deviation) parameters each have on them a tilde (˜) accent. The stochastic
processes of the exogenous shocks are specified in log-linearized forms in what follows.

The scaled risk premium shock ε̃b
t follows a first-order autoregression (AR(1)) with a

normally and independently distributed (NID) innovation:

ε̃b
t � ρb ε̃

b
t−1 + η̃

b
t , η̃b

t ∼ NID(0, σ̃2
b),

where ρb is the AR(1) coefficientmeasuring persistence of the shock and η̃b
t is the innovation

with a zero mean and a variance of σ̃2
b . Similarly, the scaled MEI shock ε̃i

t , the technology
shock ε̂a

t , and the scaled wage markup shock ε̃w
t follow AR(1) processes with NID innova-

tions, in which ρi , ρa , and ρw are the respective AR(1) coefficients measuring persistence
of the respective shocks and σ̃2

i , σ
2
a , and σ̃2

w are the variances of the respective underlying
NID innovations.

The sector-s (s � 1, . . . , S) price markup shock ε̂p
t (s) has two components: a common

component ζ̂p
t and a sector-specific component ζ̂p

t (s) such that

ε̂
p
t (s) � ζ̂

p
t + ζ̂

p
t (s). (11)

ζ̂
p
t and ζ̂

p
t (s) follow AR(1) processes with persistence ρp and ρp(s), respectively. The

NID innovations underlying ζ̂p
t and ζ̂p

t (s) are η
p
t and ηp

t (s) with variances σ2
p and σ2

p(s),
respectively. The scaled version of (11) to be used in estimation is:

ε̃
p
t (s) �

(1 − βγ1−σcθp(s))(1 − θp(s))
θp(s)

ζp ζ̃
p
t + ζ̃

p
t (s),

where ζ̃p
t and ζ̃p

t (s) are scaled versions of ζ̂p
t and ζ̂p

t (s), respectively, and ζp is a scaling
parameter. The variances of the scaled innovations underlying ζ̃p

t and ζ̃p
t (s) are σ̃2

p and
σ̃2

p(s), respectively. The presence of a common component causes the sectoral price markup
shocks to be contemporaneously correlated.

Following Smets and Wouters (2007), I assume that the government spending shock

14The standard deviations of the unscaled shocks can be quite disperse, which may pose difficulty in
specifying suitable priors and lead to inefficiency in sampling the posterior distribution. The scaled shocks
mostly have standard deviations of similar magnitude.
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follows an augmented AR(1) process:

ε̂
1

t � ρ1 ε̂
1

t−1 + η
1

t + ρ1aη
a
t , η

1

t ∼ NID(0, σ2
1),

where ρ1 is the persistence parameter, ηa
t is the innovation in the AR(1) process of the

technology shock, and ρ1a is a parameter measuring the contribution of the technology
innovation to the government spending shock. The monetary policy shock is simply an
NID innovation:

ε̂r
t � η

r
t , ηr

t ∼ NID(0, σ2
r ).

The total number of structural innovations in the model is 7 + S.

3 The Aggregate New Keynesian Phillips curve and the Role of Relative Prices

By log-linearizing the intermediate-good producers’ optimality conditions around the
symmetric steady state, combining the resulting equationswith the log-linearized equations
of the law of motion of sectoral price levels, and then aggregating the resulting sectoral
equations, I obtain the aggregate NKPC:

π̂t �

S∑
s�1

ω∗s
ιp(s)

1 + βγ1−σc ιp(s)
π̂t−1 +

S∑
s�1

ω∗s
βγ1−σc

1 + βγ1−σc ιp(s)
Et π̂t+1

+

S∑
s�1

ω∗s
1 − βγ1−σcθp(s)
1 + βγ1−σc ιp(s)

1 − θp(s)
θp(s)

(
m̂ct + σ

p(s)ε̂p
t (s)

)
−

S∑
s�1

ω∗s

(
1 + βγ1−σcθ2

p(s)
1 + βγ1−σc ιp(s)

1
θp(s)

ϕ̂t(s) −
ϕ̂t−1(s) + βγ1−σc Et ϕ̂t+1(s)

1 + βγ1−σc ιp(s)

)
,

(12)

where σp(s) � εp(s)/(1 + εp(s)), s � 1, . . . , S, and m̂ct is the (log deviation of) real marginal
cost. As the NKPC in a typical single-sector model (with price indexation) does, (12) states
that current aggregate inflation (π̂t) depends positively on past aggregate inflation (π̂t−1),
expected future aggregate inflation (Et π̂t+1), the current real marginal cost (m̂ct), and the
current price markup shocks ({ε̂p

t (s)}Ss�1). A novel feature of the aggregate NKPC in the
multisector model is that relative prices ({ϕ̂t(s)}Ss�1) play a first-order role. The net effects
of relative prices on aggregate inflation (i.e., the third line of (12)) do not vanish in general
unless the sectors are homogenous in price stickiness and price indexation, i.e., θp(s) � θp

and ιp(s) � ιp , for all s � 1, . . . , S.
In a typical single-sector model, despite the presence of price dispersion in the equi-

librium due to asynchronous price resetting across intermediate-good producers, there
is no first-order role of relative prices, which can be attributed to two factors. First, all
intermediate-good producers choose the same price in the symmetric steady state at a
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single markup over the same nominal marginal cost. Therefore, log-linearization of the
optimality conditions of the intermediate-good producers in the neighborhood of the steady
state, which is a first-order approximation, cannot capture equilibrium price dispersion,
which is a second-order feature. Second, although intermediate-good producers reset their
prices at random time, there is a dichotomy in intermediate-good producers’ price-setting
behaviors at any given time: either re-optimizing or indexing prices. Additionally, all those
who re-optimize their prices choose exactly the same new price, because across producers
the marginal cost of production is the same and the current and the expected future price
markups are the same; all those who index their prices follow exactly the same indexation
rule. As a result, asynchrony of price changes or price dispersion does not manifest itself
in the law of motion of the aggregate price level. Both factors suggest that the absence of a
first-order role of relative prices in a single-sector model is ultimately due to that monop-
olistic intermediate-good producers are not sufficiently distinguished from each other in
terms of their price-setting behaviors in a single-sector model.

In themultisectormodel considered here, the introduced sectoral heterogeneities further
distinguish intermediate-good producers from each other. Intermediate-good producers in
different sectors may impose different steady-state price markups and thus choose different
prices in the steady state.15 In addition, the law of motion of the sectoral price level varies
across sectors, because the proportion of producers resetting their prices (1 − θp(s)) varies,
the new price set by re-optimizing producers varies due to sector-specific markup shocks
(εp

t (s)), and the degree of price indexation (ιp(s)) varies. Consequently, relative prices arise
in the aggregate NKPC in the multisector model.

Relative prices provide the link between sectoral-level aggregates and economy-wide
aggregates in the multisector model as well. Log-linearizing (1) (after detrending it) gives

ŷt(s) � −ϕ̂t(s)/ν + ŷt , (13)

which states that sectoral output ( ŷt(s)) is economy-wide aggregate output ( ŷt) less a relative
price term (ϕ̂t(s)/ν).16 Suppose the model economy is hit by a contractionary shock that
causes output and the price level to fall (e.g., an unexpected increase in the nominal interest
rate by the central bank). Then (13) suggests that the sectors in which the relative-price
responses are positive, i.e., the sectors in which the sectoral price levels fall less than the
economy-wide average price level does, will have relatively larger declines in output, and
vice versa. This result potentially provides a structural explanation to Boivin et al.’s (2009)
finding of a negative cross-sectional relationship between the responses of PCE prices and

15In subsequent estimation I calibrate steady-state price markups in all sectors to be the same, i.e., εp(s) � εp ,
s � 1, . . . , S. Such calibration, however, does not eliminate the first-order role of relative prices in the NKPC,
which persists as long as other sectoral heterogeneities exist, or alter how sectoral output and inflation depend
on relative prices (to be discussed shortly), which persists as long as sectoral composite goods are not perfect
substitutes of each other nor perfectly distinct from each other.

16Other authors (e.g., Aoki 2001, Bodenstein et al. 2008, Pasten et al. 2016) have obtained similar equations.
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those of PCE quantities after a contractionary monetary policy shock in their estimated
FAVAR.

Equation 14 has implications on how price stickiness in a sector affects movements in
real variables in the sector relative to those in other sectors. In a sector with relatively more
flexible prices, a larger proportion of producers in the sector are able to timely change their
prices in the face of an aggregate shock. Hence the sectoral price level may jump by more
than the economy-wide average price level does, and thus sectoral output may be shifted by
less than economy-wide output is done according to (13). In other words, price flexibility
acts as a shock absorber that trades nominal variability for real stability on the sectoral level.
Some studies did find empirically a positive cross-sectional relationship between the speed
or the magnitude of the response of the sectoral price to an aggregate shock and sectoral
price flexibility (see, e.g., Maćkowiak et al. 2009, Kaufmann and Lein 2013, Bouakez et al.
2014), and a negative cross-sectional relationship between the magnitude of the responses
of sectoral output and sectoral price flexibility (see Bouakez et al. 2014).

Additionally, (13) suggests that, other things equal, the more differentiated the sectoral
composite goods are (a higher ν), the less disperse the responses of sectoral output to a
shock are across sectors. In the extreme that the sectoral composite goods are perfectly
distinct and no substitution occurs (ν → ∞), dispersion in sectoral output movements
across sectors is completely suppressed ( ŷt(s) � ŷt , for all s � 1, . . . , S).

Log-linearizing (3) gives

π̂t(s) � ϕ̂t(s) − ϕ̂t−1(s) + π̂t , (14)

which states that sectoral inflation (π̂t(s)) is economy-wide aggregate inflation (π̂t) plus a
relative price term (∆ϕ̂t(s) � ϕ̂t(s) − ϕ̂t−1(s)). Equation 14 suggests that the relatively more
inflationary sectors are those in which the relative prices grow faster.

4 Bayesian Estimation and Inference

The multisector models M1 and M2 are estimated with Bayesian techniques. In this
section I first describe the data used in estimation and the measurement equations linking
the variables in the model to the observed time series. Then I describe calibration of some
of the model parameters and the priors for the estimated parameters. Finally I present and
discuss the results of estimation at length.

4.1 Data

I use seven types of quarterly time series spanning 1985Q1–2015Q4 in estimation, includ-
ing real output per capita (ydata

t ), real consumption per capita (cdatat ), real investment per
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capita (idatat ), labor supply per capita (Ldata
t ), the real wage (wdata

t ), the nominal interest rate
(Rdata

t ), and th aggregate and the sectoral inflation rates (πdata
t and πdata

t (s), s � 1, . . . , S).17
The nominal interest rate in 1985Q1–2009Q1 is the daily effective federal funds rate

in the last business day of the preceding quarter.18 The nominal interest rate in 2009Q2–
2015Q4 is the monthly Wu–Xia (2016) shadow federal funds rate in the last month of the
preceding quarter, estimated by the Board of Governors of the Federal Reserve System.19
The substitution of Wu–Xia shadow federal funds rate after 2008 is motivated by that, when
the regular federal funds rate was at the zero lower bound from the end of 2008 to the end
of 2015, it cannot capture the actual liquidity in the economy while Wu–Xia shadow federal
funds rate contained economically meaningful information (Wu and Xia 2016).

The consumption-good market in the model economy is segmented. I identify sectors
of the consumption-good market mostly by third-level disaggregate categories underlying
PCE in Table 2.3.5 of theNational Income andProductAccounts published by theUS Bureau
of Economic Analysis (BEA), excluding those for durable goods, which gives S � 12 sectors.
Table 1 lists the sectors and their average consumption shares (ωob

s , s � 1, . . . , S). These
shares are computed as the proportions of sectoral PCE in the total PCE on all nondurable
goods and services, averaged over the sample period of 1985Q1–2015Q4. Table 1 shows
that the majority (73%) of households’ consumption expenditures were on services over the
sample period, with the first largest category being housing and utilities20 (sector 5) and
the second largest category being health care (sector 6).

[Table 1 about here.]

Aggregate inflation is the first difference of the logarithm of a price index measuring the
overall price level for PCE on nondurable goods and services. This price index is constructed
as the ratio of the sum of nominal PCE on nondurable goods and services to the sum of real
PCE in the two broad categories. Sectoral inflation is the first difference of the logarithm
of the PCE price index in the sector. The last two columns of Table 1 show the inflation
profiles of the twelve sectors. Over the sample period, sector 6 (health care) experienced
the highest average inflation rate, while sector 2 (clothing and footwear) and sector 12

17Real output is obtained by deflating the nominal gross domestic product (GDP) by its implicit price deflator.
Real consumption is the sum of real PCE on nondurables and services, each obtained by deflating the nominal
series by the respective implicit price deflators. Real investment is the sum of real gross private domestic
investment and real PCE on durables, each obtained by deflating the nominal series by the respective implicit
price deflators. Labor supply is an index of hours worked of all persons in nonfarm business. The preceding
time series are put in per capita terms before they enter the measurement equations by dividing them by the
civilian non-institutional population aged 16 or over. The real wage is an index of per hour compensation in
nonfarm business deflated by the implicit GDP deflator.

18This choice is to match the frequency of Wu–Xia shadow federal funds rate used in subsequent periods;
see footnote 19. When the daily rate in the last business day of a given quarter is not available, the daily rate in
the preceding business day is substituted. Such a time series of interest rate approximates the policy interest
rate set by the central bank in the economy in the beginning of a period (a quarter).

19The estimated shadow rates are for the last business day of each month.
20Expenditures on housing dominate those on utilities, with the former taking up more than 83% of the

sum of the two expenditures on average over the sample period.
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(final consumption expenditures of nonprofit institutions serving households (NPISHs))
experienced the lowest, in fact negative, average inflation rates. The inflation rate in sector 3
(gasoline and other energy goods) was the most volatile, while that in sector 9 (food services
and accommodations) was the least volatile. Details on the data, their sources, and the
transformations applied are included in the appendix.

4.2 Measurement equations

Before presenting the measurement equations, I define the observable variables in the
model. The model’s observable (detrended) aggregate output yob

t is linear aggregation of
the (detrended) outputs of individual intermediate-good producers {yt(s( j), j)} j∈(0,1):

yob
t �

∫ 1

0
yt(s( j), j) d j.

With subsequent calibration of the model, it can be shown that ŷob
t � ŷt (see the appendix).

For the observable aggregate consumption, investment, and labor supply, similar relation-
ships can be established. For prices and wages, I assume that the observable aggregates are
identical to the ones aggregated with CES aggregators.21

The sector sizes {ωs}Ss�1, as measured by the masses of intermediate-good producers
in the sectors, are not observable. With subsequent calibration of the model, however, the
unobservable sector size ωs (s � 1, . . . , S) coincides with the observable sector size ωob

s ,
which is the sectoral consumption share listed in Table 1 (see the appendix for more detail).

The measurement equations are given by

100 ·
[
d∆ ln ydata

t , d∆ ln cdatat , d∆ ln idatat , d∆ ln Ldata
t , d∆ ln wdata

t ,

d∆Rdata
t /100, dπdata

t , dπdata
t (1), . . . , dπdata

t (S)
] ′

�
[
∆ ŷt ,∆ĉt ,∆ît ,∆L̂t ,∆ŵt ,∆R̂t , π̂t , π̂t(1), . . . , π̂t(S)

] ′
+ ηme

t ,

where ∆ is the first difference operator (i.e., ∆xt � xt − xt−1), d indicates removal of sample
mean (i.e., dxt � xt −

∑T
t�1 xt/T), and ηme

t is an (S + 7)-by-1 vector of measurement errors. I
first difference the logarithm of per capita labor supply (ln Ldata

t ) and the nominal interest
rate (Rdata

t ) because univariate unit-root tests provide evidence in favor of presence of a unit
root in the former series and to a less extent in the latter one.22 Following Christiano et al.

21The real-world price or wage indices published by statistical agencies such as the BEA are generally not
linear aggregation of individual prices or wages, which renders defining the observable aggregate price or
wage in the model with a linear aggregator inappropriate. On the other hand, an aggregator mimicking what
statistical agencies do to produce the published price or wage indices would complicate estimation of the model.
My choices here are largely for simplicity.

22I applied multiple univariate unit-root tests on each series. For the logarithm of per capita labor supply
(ln Ldata

t ), all the tests favored presence of a unit root at any conventional significance level. For the nominal
interest rate (Rdata

t ), the results were mixed and depended on the test method, lag order selection, and sample
selection. See the appendix for details.
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(2011) and Christiano et al. (2014), I remove the sample mean from each time series used in
estimation.

Measurement errors are added for several reasons. First, the data are possibly measured
with noise. A measurement error on the interest rate is warranted by the fact that the data
in 2009Q2–2015Q4 are substituted with estimated shadow rates. Second, since in the model
π̂t �

∑S
s�1 ω

∗
s π̂t(s) but in the data dπdata

t ,
∑S

s�1 ω
∗
s · dπdata

t (s) in general, the inclusion of
the aggregate inflation rate and all the sectoral inflation rates as the observable variables at
the same time would lead to stochastic singularity unless one or more measurement errors
are added on the inflation rates. Third, measurement errors may help accommodate model
misspecifications (Del Negro and Schorfheide 2009).

4.3 Calibration

[Table 2 about here.]

The calibrated parameters are listed in Table 2. The (quarterly) growth rate along the
balanced growth path in the economy is set to γ � 1.0046, which implies an annual growth
rate of real gross domestic product (GDP) per capita of about 1.9% andmatches the average
in the data over the period of 1985Q1–2008Q2.23 The steady-state (quarterly) inflation rate
is set to π � 1.0062, implying an annual rate of 2.5%. The steady-state share of government
spending inGDP is set to 1 � 0.17, whichmatches the average in the subsample till 2008Q2.24

The inverse of theEIS is set to σc � 1.25, which is broadly consistentwithmicro andmacro
evidence.25 The households’ (quarterly) discount factor is calibrated at β � 1/1.0013 ≈ 0.9987
so that the implied steady-state annual nominal interest rate is 5.43%, which matches the
average in the subsample till 2008Q2. The equilibrium dynamics are independent of the
parameter value of steady-state labor supply L; however, I arbitrarily set L � 1. The inverse
of Frisch elasticity of labor supply is set to σl � 2. The (quarterly) depreciation rate of capital
is set to δ � 0.025. The exponent of capital in the production function is set to α � 0.33.
The calibrated values of σl , δ, and α are commonly used in the literature. The parameter
ψ �

∑S
s�1 ωsΨs/y, which is the ratio of the weighted average sectoral fix cost to steady-state

output, is set to ψ � 0.04.
I fix the steady-state wage markup at 5%, i.e., εw

� 0.05, and the steady-state price
markups in all sectors at 20%, i.e., εp(s) � 0.2, for all s � 1, . . . , S. These values were used

23I use the subsample over 1985Q1–2008Q2 to calibrate some of the parameters because data in subsequent
periodswere affected by the Great Recession and are unrepresentative of the long term trend of the US economy.

24For calibration of this parameter government spending is combinedwith net exports of goods and services.
25Havránek (2015) conducted ameta-analysis on estimates of the EIS and recommended that its value should

be calibrated at no larger than 0.8 to be consistent with “the bulk of empirical evidence,” which implies that σc
should be calibrated at no less than 1.25. Crump et al. (2015) estimated the (subjective) EIS to be around 0.8
in the general US population with data from the Survey of Consumer Expectations. Because Crump et al.’s
data included measures of households’ expectation of future consumption expenditures and inflation, the
authors were able to circumvent intricacies in the process of expectation formation, which challenge traditional
estimation of the consumption Euler equation, and estimate directly the elasticity of expected consumption
growth to variation in the ex ante real interest rate across individuals.
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by Christiano et al. (2005). The calibration of all sectoral price markups being the same
completely eliminates relative price dispersion in the steady state, i.e., ϕ(s) � 1, for all
s � 1, . . . , S. The inverse of the elasticity of substitution between composite consumption
goods in different sectors is set to ν � 2.5, implying that intersectoral substitution is fairly
inelastic. The variances of the measurement errors are fixed at 5% of the corresponding
data series in the measurement equations for output, consumption, investment, and all the
inflation rates. The variances of the measurement errors in the measurement equations for
labor supply, the real wage, and the interest rate are fixed at 10% of the corresponding data
series.

[Table 3 about here.]

Table 3 compares some steady-state variables, including certain “great ratios” as well as
the interest rate and the inflation rate, in the model and their counterparts in the data over
the period of 1985Q1–2008Q2. The calibrated model is able to replicate the selected features
of the data in general, except that the steady-state capital stock–GDP ratio and steady-state
inflation are lower in the model.26, 27

4.4 Priors

I employ endogenous priors à la Christiano et al. (2011). This procedure starts with an
initial set of independent priors and then updates the priors with information on standard
deviations of the data in a “pre-sample,” which is taken to be the actual sample used in
estimation. The initial priors of the estimated parameters are specified in Tables 4–7 and
described in what follows.

The prior of the habit parameter h is centered at 0.7 with a standard deviation of 0.1,
which is common in the literature. For the re-parameterized curvature of the capital
utilization cost function, κz , I follow Smets and Wouters (2007) and set a prior with a mean
of 0.5 and a standard deviation of 0.15. For the re-parameterized curvature of the investment
adjustment cost function, κi , I center the prior at 0.8 with a smaller standard deviation of 0.1.
With κi � 0.8, the implied original curvature of the investment cost adjustment function is
S′′i � κi/(1− κi) � 4, which is a value widely used in the literature for the prior mean of the
parameter S′′i . The prior for Calvo wage stickiness θw is centered at 0.75, which implies an
average wage contract length of one year, and a standard deviation of 0.1. The prior for the
degree of wage indexation has a mean of 0.5 and a standard deviation of 0.15. These priors
are also common in the literature.

26Gomme and Lkhagvasuren (2012) argued that measuring capital stock can be challenging due to issues
such as what to include in the measure and large data revisions. The authors suggested that calibrating the
model to target the capital–output ratio “seems unwise.”

27Given that the model’s steady-state growth rate of output is matched with the subsample average growth
rate of real GDPper capita and that σc � 1.25, themodel has difficulty to simultaneously replicate the subsample
average interest rate and the subsample inflation rate unless the households’ discount factor is set to a value
extremely close to one, which is less favorable.
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Turn to the sector-specific structural parameters. The parameters of sectoral Calvo price
stickiness {θp(s)}Ss�1 are given the same, relatively disperse prior with a mean of 0.5 and a
standard deviation of 0.125. A prior with a mean of 0.5 and a standard deviation of 0.15 is
used for all the parameters of sectoral price indexation {ιp(s)}Ss�1.

Turn to the monetary policy parameters. The policy smoothing parameter ρr has a prior
with a mean of 0.75 and a standard deviation of 0.1. The central bank’s strength of response
to the output gap, ρx , has a normal prior with a mean of 0.125 and a standard deviation
of 0.05. These specifications are taken from Smets and Wouters (2007). For the strength of
response to aggregate inflation under the single-inflation-target scheme (model M1) and
the strength of overall response to target inflation under the multi-inflation-target scheme
(model M2), the normal prior has a mean of 1.75, which is larger than the more commonly
used value of 1.5, and a relatively tight standard deviation of 0.2. This prior is truncated
at 1.0001.

For all the parameters pertaining to the sectoral weights in the central bank’s target
inflation index, ρ∗∗π (s), s � 1, . . . , S, which are only applicable under the multi-inflation-
target scheme (model M2), I use a normal prior with a zero mean and a large standard
deviation of 0.5. Due to the restriction (10), ρ∗∗π (s), s � 1, . . . , S, cannot all be freely estimated,
so in practice one of them is notdirectly estimatedbut inferred from the otherdirect estimates
via the restriction (10). I choose to not directly estimate ρ∗∗π (7).28 The left tail of the loose
prior on ρ∗∗π (s) allows zero weight on inflation in sector s.

Finally, turn to the parameters for shocks and innovations. I specify a prior with a mean
of 0.5 and a standard deviation of 0.2 for all AR(1) coefficients of shocks, which is standard
in the literature. I specify priors for 100 times the standard deviations of the innovations.
With a few exceptions, a prior with a mean of 0.2 and a standard deviation of 0.33 is used.
Recall that I have scaled some of the shocks and the corresponding innovations. The priors
are specified for the scaled ones whenever applicable.

Exceptions are made on the basis that an innovation may be badly scaled, which mostly
affects the sectoral price markup innovations. These innovations are scaled by factors that
tend to decrease the sizes of the scaled ones and vary negatively with the estimated degrees
of price stickiness in the corresponding sectors. The data show that in the estimation sample
quarterly inflation in sector 3 (gasoline and other energy goods) has a standard deviation
much larger than those in the other sectors (see Table 1). In addition, micro evidence
suggests that, among the twelve sectors, sector 3 might be the sector with the most flexible
prices, as price change in the sector is the most frequent (see Table 8 below). These two
observations together indicate that the scaled sector-specific component of the pricemarkup
shock in sector 3 might have a size much larger than those in the other sectors. Hence I
choose a prior with a large mean of 4.0 and a large standard deviation of 6.67 for 100σ̃p(3).

28Sector 7 is chosen because over the estimation sample it has a relatively small consumption expenditure
share and its sectoral price level is closest to the overall price level on average. The estimation results are robust
to the choice of ρ∗∗π (s) to be excluded from the set of directly estimated parameters.
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Micro evidence also suggests that, among the twelve sectors, sector 6 (health care) might
be the one with the stickiest prices as price change in the sector is the most infrequent (see
Table 8 below). Thus the scaling factor applied in sector 6 might be the smallest, resulting
in the scaled price markup innovation in sector 6 having a too small size. As a result, I use
a prior with a lowered mean of 0.1 and a standard deviation of 0.33 for 100σ̃p(6).

4.5 Estimation results

In this subsection I present and discuss at length the estimation results, including the
posteriors, variance decomposition, and the impulse response functions of the relative prices
to a monetary policy shock. Identification tests à la Iskrev (2010) reveal that the estimated
parameters in bothmodelM1 andmodelM2 are locally identified at the respective posterior
modes.

4.5.1 Posteriors and model comparison

Tables 4–7 report the posterior modes and the standard deviations of the estimated
parameters in the two models M1 and M2, which differ only in the equipped monetary
policy scheme. In general, the posterior standard deviations are smaller than the respective
prior standard deviations, indicating that the data used in estimation have been informative.
The exceptions are many of the sector-specific monetary policy parameters in M2, for which
the data are less informative.

[Table 4 about here.]

Model comparison. I start with a comparison of the two estimated models. Most of the
posteriors of the non-monetary-policy parameters are close in the two estimated models.
For comparable monetary policy parameters (Panel B of Table 4), M2 has a much lower
smoothing parameter (ρr), a higher strength of response to aggregate or overall inflation
(ρπ versus ρ∗π), and a much lower strength of response to the output gap (ρx) than M1 does.
The (Laplace approximated) marginal log-likelihood of M2 is 16.3 log points more than that
ofM1, which gives a Bayes factor of exp(16.3) and provides very strong evidence againstM1

per interpretation by Kass and Raftery (1995).29 Given my interpretation of the monetary
policy scheme in M2, the rejection of M1 by the data suggests that over the sample period
the Fed’s responses to sectoral inflation rates seemed different from what they would have
been if the Fed had been targeting the aggregate inflation rate and weighting the sectors
with their natural weights, i.e., consumption expenditure shares. In other words, the Fed
seemed to have targeted a customized index of inflation rather than the aggregate inflation
rate. Since the data favor M2, the remainder of the discussion will focus on M2.

29Kass and Raftery (1995) interpreted twice the natural logarithm of the Bayes factor being larger than 10 or
the Bayes factor being larger than 150 as very strong evidence against the null model.
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Posteriors of the sector-specific monetary policy parameters. Recall that ρ∗∗π (s) represents the
relative difference of the weight of sector-s inflation in the central bank’s index of overall
inflation from the natural one, and that ρ∗π(s) is the actual weight (s � 1, . . . , S). The
posterior modes and standard deviations of ρ∗∗π (s), s � 1, . . . , S, are listed in the sixth
column and the seventh column of Table 5, respectively. The inferred modes and standard
deviations of ρ∗π(s), s � 1, . . . , S, are listed in the seventh column and the eighth column of
Table 5, respectively.

[Table 5 about here.]

Taking the standard deviations into consideration, I find that most of the posterior
distributions of ρ∗∗π (s) have the majority of their densities not far away from zero, implying
that the sectoral weights in the Fed’s customized index of overall inflation seemed no
different from the corresponding natural weights for most of the sectors over the sample
period. Several exceptions emerge: sector 3 (gasoline and other energy goods), sector 6
(health care), sector 5 (housing and utilities), and sector 10 (financial services and insurance).
For sector 3 and sector 6, the majority of the posterior densities of ρ∗∗π (s) are located far
away from zero, and the inferred actual weights (ρ∗π(s)) are virtually zero, implying that the
Fed did not seem to respond to inflation in the two sectors at all during the sample period.
The posterior mode of ρ∗∗π (10) is moderately negative, suggesting that the Fed responded
possibly weakly to inflation in sector 10. On the other hand, the estimated mode of ρ∗∗π (5) is
positive and large, implying that over the sample period the Fed responded to inflation in
sector 5 more aggressively than it would have done if it had targeted aggregate inflation.

The exclusion of inflation in sector 3 from the Fed’s estimated index of overall inflation
appears no surprise, given the Fed’s past focus on core PCE inflation, which excludes food
and energy inflation30. However, had the Fed targeted core PCE inflation and not responded
to inflation in food prices over the sample period, the estimated weight on sector-1 (food
and beverages purchased for off-premises consumption) inflation, ρ∗π(1), should have been
much lower. The difference suggests that the Fed treated food prices and energy prices very
differently during the sample period.

The estimated zero weight on sector-6 inflation and the estimated extra weight on
sector-5 inflation in the Fed’s index of overall inflation are somewhat surprising. It remains
unclear why the Fed seemed to not respond to changes (most likely increases) in the price
of health care at all over the sample period. Perhaps it was because among the twelve
sectors, sector 6 was the most inflationary sector over the sample period (see Table 1), and
thus the Fed thought changes in the price of health care were not indicative of the trend
inflation. However, over the sample period inflation rates in sector 5 had the third largest
mean and the second smallest standard deviation among the twelve sectoral inflation rates

30The BEAdefines “food” consisting of food and beverages purchased for off-premises consumption (sector 1
in this paper) and defines “energy” consisting of gasoline and other energy goods (sector 3 in this paper) and
of electricity and gas services (a subcategory in sector 5 in this paper).
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(see Table 1). If the Fed was simply avoiding the most inflationary sectors, it should perhaps
lower the weight on sector-5 inflation as well, instead of putting extra weight on sector-5
inflation.

Based on the estimated weights at the posterior mode, the Fed’s overall behavior in
response to inflation during the sample period seemed to be targeting an index of overall
inflation consisted of inflation in all sectors except sector 3 (gasoline and other energy goods)
and sector 6 (health care), weighted by the sectoral consumption expenditure shares except
for sector 5 (housing and utilities), of which the weight was larger, and sector 10 (financial
services and insurance), of which the weight was possibly smaller.

Posteriors of the non-sector-specific structural parameters. The posterior mode of the habit
parameter turns out somewhat larger than the values commonly obtained in other DSGE
models estimating this parameter (e.g., Smets and Wouters 2007, Christiano et al. 2011),
but not excessively large compared to the values obtained by Fuhrer (2000). The estimated
curvature of the cost function of setting capital utilization is very large. At the posterior
mode, κz � 0.94 implies σz � 15.2, which is much larger than estimates in the literature (e.g.,
Smets and Wouters 2007, Christiano et al. 2011). The estimated curvature of the investment
adjustment cost function is in line with estimates in the literature. At the posterior mode,
κi � 0.88 implies a large cost in adjusting investment, with the original curvature parameter
S′′i � 7.51. The posterior of Calvo wage stickiness (θw) suggests a more flexible wage than
it is assumed in the prior, with the average wage contract length equal to 2.4 quarters at
the posterior mode. The degree of wage indexation is estimated to be low. The findings on
the degrees of wage stickiness and wage indexation here differ from those by Smets and
Wouters (2007), who found both a stickier wage and a higher degree of wage indexation.
Among the non-sector-specific shocks, the wage markup shock, the common component of
the price markup shocks, and the risk premium shock appear to be short-lived,31 while the
technology and the MEI shock seem to be more persistent.

Posteriors of the sector-specific characteristics.

[Table 6 about here.]

[Table 7 about here.]

Turn to the parameters of the sector-specific characteristics, which are collected in
Tables 6–7. The posterior modes of sectoral Calvo price stickiness (θp(s), s � 1, . . . , S) are
larger than 0.72 for all sectors except sector 3 (gasoline and other energy goods), and are

31Ashort-livedwagemarkup shock is notuncommon in the literature. Smets andWouters (2007) addedafirst-
order moving average (MA(1)) component to the wage markup shock to account for high-frequency variation
in the real wage. In this paper’s model, however, adding an MA(1) component is less favorable because the
MA(1) coefficient and the existing AR(1) coefficient of the wage markup shock cannot be individually identified
in estimation. Christiano et al. (2011) pointed out that, without an extensive margin, any change in labor
supply (on the intensive margin) had to be from a change in the real wage, and thus such a model needed
high-frequency variation in real wage to match the data for labor supply.
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mostly above 0.87, suggesting substantial price stickiness in the majority of sectors. Looking
across sectors, I find some dispersion in the posterior modes, indicating heterogenous price
stickiness across sectors. I note that the estimated Calvo probabilities should be interpreted
with caution here, since they reflect the frequencies of producers re-optimizing their prices
rather than simply changing the prices in a model with price indexation. The price of a good
can change in every period since producers always index their prices whenever they are
not given the chance to re-optimize their prices. Nonetheless, the estimated sectoral Calvo
probabilities do capture some of the cross-sectional difference in the average frequency of
price change evidenced by micro data.

[Table 8 about here.]

Table 8 compares across sectors the estimated degree of sectoral price stickiness at
the posterior mode with the average monthly “infrequency” of price change reported in
Carvalho and Lee (2011, Table 16). Carvalho and Lee matched Bils and Klenow’s (2004)
micro data on the frequency of price change to disaggregate PCE categories, and their
15-sector specification consisted of sectors matching the ones used in this paper. The
sectors are ranked in terms of their price stickiness. The estimated model successfully
identifies the sector with the stickiest prices—sector 6 (health care), the sectors with the
most price flexibility, such as sector 3 (gasoline and other energy goods) and sector 1 (food
and beverages purchased for off-premises consumption), and some sectors in the middle of
the spectrum of price stickiness, such as sector 4 (other nondurable goods). On the other
hand, multiple sectors are ranked very differently. For instance, the estimated model ranks
sector 10 (financial services and insurance) relatively lowwhereas the micro data rank it the
second highest. An opposite instance is that sector 2 (clothing and footwear) is ranked the
third by the estimated model whereas it is given a below-average rank by the micro data.
Basing on the results of comparison, I find that the estimated model is, in general, capable
of qualitatively accounting for the difference in the average frequency of price change of
individual goods across consumption sectors evidenced by the micro data, without access
to data on individual prices.32

I find low to moderate degrees of sectoral price indexation, in line with the findings by
Smets and Wouters (2007) and Christiano et al. (2011), and there is also dispersion in the
degree of price indexation across sectors (ιp(s) ranging from 0.11 to 0.49). For the sector-
specific components of the price markup shocks, persistence (ρp(s)) varies greatly across
sectors. For instance, sector 12 (final consumption expenditures of NPISHs) has the most
persistent sector-specific shock component (ρp(12) � 0.97) while sector 7 (transportation
services) has the least persistent one (ρp(7) � 0.27). Yet, all of the sector-specific shock

32Alternatively, I run a simple linear regression of the statistics in the fifth column of Table 8 on the estimated
Calvo probabilities in the third column of the table. The slope estimate is positive and statistically significantly
non-zero at the 10% level (with bootstrapped standard error). The regression has R2 � 0.76.
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components are relatively more persistent than the common shock component (see Panel C
of Table 4).

The true sizes of the price markup innovations are unclear from Table 7, since Table 7
only shows the estimates of the scaled ones. I recover the estimated standard deviations of
the unscaled innovations underlying the sector-specific components of the price markup
shocks as well as the one underlying the common component at the posterior mode in
the third column and the second column of Table 9, respectively. Then I decompose
the standard deviations of the unscaled price markup shocks (sd(ε̂p

t (s))) into a common
component (sd(ζ̂p

t )) plus the sector-specific components (sd(ζ̂p
t (s)), s � 1, . . . , S) in the last

three columns of Table 9. I have three observations from Table 7. First, the size of the sector-
specific innovation differs vastly across sectors, with the largest (100 sd(η̂p

t (2)) � 120.1) more
than eighty-four times as large as the smallest (100 sd(η̂p

t (1)) � 1.42). Second, at the shock
level, the sector-specific component (ζ̂p

t (s)) dominates the common component (ζ̂p
t ) in size.

Third, the sector-specific shock components in sector 1 (food and beverages purchased for
off-premises consumption) and sector 5 (housing and utilities) have the smallest standard
deviations among all.

[Table 9 about here.]

4.5.2 Model moments and variance decomposition

[Table 10 about here.]

Table 10 compares the standard deviations of the observed time series that enter the
measurement equations and those of the corresponding observable variables in the model.
The model generally matches the data well owing to the endogenous priors. For some vari-
ables (e.g., growth of real investment per capita and growth of labor supply per capita), the
model standard deviations deviate moderately but not excessively from the corresponding
data standard deviations.

[Table 11 about here.]

Table 11 presents the unconditional variance decomposition of selected endogenous
variables at the posterior mode. Observe first that the MEI shock dominates the other
shocks in variance decomposition of most real variables including output, consumption,
investment, and labor supply as well as in variance decomposition of the nominal interest
rate, which is partly in line with Justiniano et al.’s (2011) finding that the MEI shock was
the primary driver of output, investment, labor supply, and the nominal interest rate at
business cycle frequencies.33 The technology shock is the most important driver of the real

33Justiniano et al.’s (2011) found that theMEI shock only explained a small fraction of consumption variation
in business cycle frequencies. While Justiniano et al.’s (2011) model had an intertemporal preference shock, the
models considered here (M1 and M2) do not.
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wage and the second most important driver of output, consumption, and investment in the
long run.

The sector-specific price markup shocks, which include a common component and
sector-specific components, mostly do not contribute or contribute marginally to long-run
variations in real variables. A notable exception is the sector-specific component in sector 6
(health care), which explains almost 20% of long-run variation in the real wage and turns
out to be a more important driver of the real wage in the long run than the wage markup
shock is. The monetary policy shock contributes marginally to long-run variations in real
variables, while it is the second most important driver of the nominal interest rate in the
long run. The risk premium shock or the government spending shock, however, contributes
only marginally to variations in all variables in the long run.

Thepricemarkupshocks togetheraccount forover77%of long-runvariation in aggregate
inflation. This result differs from the finding by Smets and Wouters (2007) that the wage
markup shock rather than the price markup shock accounted for the most of long-run
variation in aggregate inflation. The “aggregate” shocks, i.e., shocks other than the sector-
specific components of the pricemarkup shocks, togetheronly explain about 27%of long-run
variation in aggregate inflation, while the sector-specific shock components explain about
73% of long-run variation in aggregate inflation. This result stands in contrast to Boivin
et al.’s (2009) finding that volatility of aggregate PCE inflation is mostly due to aggregate
fluctuations. On the other hand, Bouakez et al. (2014) found in an estimated DSGE model
with heterogenous sectors that sector-specific productivity shocks explained 39–50% of
long-run variation in aggregate inflation. Looking at the sector-specific components, I find
that the sector-specific component in sector 3 (gasoline and other energy goods) explains a
dominant proportion of 51.1% of long-run variation in aggregate inflation. Bouakez et al.
(2014) also found that a significant fraction (14–19%) of long-run variation in aggregate
inflation was explained by the oil productivity shock. Additionally, the sector-specific shock
components in sector 6 (health care) and sector 10 (financial services and insurance) have
nontrivial contributions to variation in aggregate inflation in the long run.

Turn to decomposition of the sectoral inflation rates. Long-run variation in the sectoral
inflation rates is mostly explained by the sector-specific components of the price markup
shocks in the individual sectors, but the proportions being explained vary by sector. This
result is broadly in line with the findings by Boivin et al. (2009) andDe Graeve andWalentin
(2015). De Graeve and Walentin refined Boivin et al.’s FAVAR to control for measurement
error, sales, and item substitution and found that in one out of four sectors aggregate shocks
accounted for more variation in sectoral inflation than sector-specific shocks did, while the
proportion is one out of twelve in this study.

The two sectors inwhichmore than 45% of long-run variation in sectoral inflation rates is
explained by aggregate shocks are sector 1 (food and beverages purchased for off-premises
consumption) and sector 5 (housing and utilities). There is a third sector, sector 9 (food
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services and accommodations), in which the proportion is over 43% and is the third largest
among those of all sectors. A common trait of the three sectors is the size of the sector-specific
component of the price markup shock being relatively small (see Table 9). A cross-sectional
regression predicts a statistically significant decrease in the proportion of long-run variation
in sectoral inflation explained by aggregate shocks, denoted VD∞(π̂(s),AGG), when the
logarithm of the estimated standard deviation of the sector-specific shock component in the
same sector, ln sd(ζ̂p

t (s)), increases.34

4.5.3 Impulse response functions of the relative prices to a monetary policy shock

Now I examine how the sectoral relative prices, ϕ̂t(s), s � 1, . . . , S, and growth of the
sectoral relative prices, ∆ϕ̂t(s), s � 1, . . . , S, respond to a monetary policy shock. Figure 1
shows the impulse response functions of these endogenous variables to a contractionary,
one-standard-deviation monetary policy shock at the posterior mode. Recall the discussion
in Section 3 on the relationship between the sectoral relative price and sectoral output and
the relationship between growth of the sectoral relative price and sectoral inflation in the
model.

[Figure 1 about here.]

Themonetary policy shock generates cross-sectional dispersion in sectoral relative prices
(Figure 1a and Figure 1b). The responses of the sectoral relative prices are generally hump-
shaped. The time at which the maximum (in absolute value) response occurs varies by
sector but is mostly 3–7 quarters after the shock hits the economy. Note that this time range
indicates the approximate time after a monetary policy shock at which the shock generates
most dispersion in relative prices. The distribution of the signed maximum responses in
absolute value (i.e., maxima in absolute value but with the same sign as the actual values)
across sectors seems asymmetric: Negative signed maximum responses (e.g., the ones in
sectors 3 and 1) tend to be larger in absolute value than positive signedmaximum responses
(e.g., the ones in sectors 6 and 11).

Looking at individual sectors, I observe that the relative-price response in sector 3
(gasoline and other energy goods) has the most negative signed maximum and peaks in
absolute value earliest, while the relative-price response in sector 6 (health care) has the
most positive signedmaximum. This observation implies that, in the face of a contractionary
monetary policy shock, prices in sector 3 fall the most, resulting in sector-3 output falling
the least, while the prices in sector 6 fall the least, resulting in sector-6 output falling the
most.

34In the cross-sectional regression of VD∞(π̂(s),AGG) on ln sd(ζ̂p
t (s)), the sector size ωs , and a constant,

the estimated coefficient of ln sd(ζ̂p
t (s)) is −0.18 with a bootstrapped standard error of 0.03. The estimated

coefficient of ωs is insignificant at any conventional level. The regression has 12 observations and R2 � 0.89.
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The monetary policy shock also generates cross-sectional dispersion in growth of the
sectoral relative prices (Figure 1c and Figure 1d). The maximum responses of growth of
the relative prices generally occurs immediately after the shock. The dispersing effect of
the monetary policy shock on growth of the relative prices dies out more quickly than its
dispersing effect on the relative prices does. Looking at individual sectors, I observe that
sector 3 (gasoline and other energy goods) and sector 6 (health care) have the most negative
and the most positive responses of growth of the relative prices, respectively, implying that
sector 3 is the most disinflationary sector and sector 6 is the least disinflationary sector in
the face of a contractionary monetary policy.

How responsive a sectoral relative price and its growth are to a monetary policy shock
may depend on price flexibility and the degree of price indexation in the sector. A number
of studies found empirically a positive, significant cross-sectional relationship between
sectoral price flexibility and the speed or the magnitude of the responses of sectoral prices
to an aggregate shock (see, e.g., Maćkowiak et al. 2009, Kaufmann and Lein 2013, Bouakez
et al. 2014). Denote the response of the relative price (ϕ̂t(s)) and the response of growth
of the relative price (∆ϕ̂t(s)) in sector s (s � 1, . . . , S) t quarters after the monetary policy
shock hits the economy by IRFt(ϕ̂(s), ηr) and IRFt(∆ϕ̂(s), ηr), respectively. Responsiveness
may be indicated by the signedmaximum response (marked by crosses in Figure 1), denoted
by IRFm(x , ηr), or the cumulative response IRFc(x , ηr) � ∑40

t�1 IRFt(x , ηr), where x is ϕ̂(s)
or ∆ϕ̂(s). Table 12 presents the results from cross-sectional regressions of these measures
of responsiveness on the estimated degrees of sectoral price flexibility and price indexation.
The size of the sector (ωs) is also included as a control variable. To better exploit cross-
sectional variation in the variables of interest, I apply a monotonic transformation function

f (x) � ln
( x
1 − x

)
, x ∈ (0, 1),

to both the estimateddegrees of sectoral price stickiness and the estimateddegrees of sectoral
price indexation, and enter the transformed variables in the cross-sectional regressions. The
regression results show that, in line with previous studies, relative prices or their growth in
sectors with more price flexibility (a lower θp(s)) tend to be more responsive to a monetary
policy shock, holding the degree of price indexation and the sector size constant. The
regression results also show that dynamic price indexation (ιp(s)) may further increase
responsiveness of sectoral relative prices to a monetary policy shock.

[Table 12 about here.]

5 Optimal Monetary Policy in the Estimated Model

In this section I try to address the following questions: How does the monetary policy
in the estimated model, under which the central bank targets a customized index of sectoral
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inflation rates, compare in terms of welfare to an alternative policy scheme under which
the central bank targets a different inflation index? How should the central bank optimally
compose an index of overall inflation from sectoral inflation rates to maximize household
welfare? I approach these questions by first proposing a numerical procedure to evaluate
welfare of the representative household in the estimated model. Then I compare in terms
of welfare the baseline monetary policy with alternative policy schemes in which the target
index of inflation is randomly composed, and finally I consider the optimal composition of
the index of overall inflation to be targeted by the central bank. All results in this section
are based on the estimated model M2 at the posterior mode.

5.1 The procedure for welfare evaluation

5.1.1 Definitions

For welfare evaluation I focus on the expected utility of the representative household in
period 0:

U(R) � E0

∞∑
t�0

βtUt(R), (15)

where Ut(R) is the period-t utility of the representative household given the set ofmonetary
policy parameters R. Welfare of the representative household in the steady state, which is
independent of the monetary policy in effect, can be derived as a function of steady-state
consumption c:

U � U(c) � A0c1−σc ,

where A0 is a constant independent of c.
In the model economy with shocks and frictions, the steady-state welfare level U in

general cannot be achieved, i.e., U(R) < U in general. To facilitate welfare comparison and
interpretation, consider the following equation:

U(R) � U
(
(1 + δc(R))c

)
, (16)

where δc � δc(R), generally negative and usually quoted in percentage, can be interpreted
as the amount by which steady-state consumption needs to be exogenously permanently
increased in order to achieved the welfare level U(R) under monetary policy R. I refer
to the absolute value of δc as the welfare gap. Since U(c) is an increasing function of c,
δc(R1) < δc(R2) is equivalent to U(R1) < U(R2), which implies that the representative
household is worse off under policy R1 than he or she is under policy R2.

5.1.2 Numerical approximation of U(R) via simulation

I choose to approximate U(R) defined in (15) numerically by repeatedly simulating the
log-linearized model and computing the approximation from the simulated data. Several
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difficulties with this approach arise. First, the summation in (15) is an infinite series while
in practice only a finite number T of terms can be included in summation. I set T � 7,500
so that the truncation error is sufficiently small.35 Second, U(R) depends on the initial state
of the economy, which is unspecified. I make the assumption that the initial state of the
economy is a random draw from the unconditional distribution of the state of the economy
in the log-linearized model. In practice, I simulate the model starting in the steady state
for a total of Td + T periods, where Td � 1,000, and discard the data in the first Td periods,
in the hope that the simulated state of the economy after Td periods closely resembles a
random draw from the unconditional distribution of the state of the economy.

Third, the expectation E0 in (15) is taken over all possible current and future states of
the economy, while in practice only a finite number of states can be produced by simulation.
I refer to a complete path of length T of all endogenous variables in the model as a
replication. I approximate the expectation by averaging over N � 2,500 replications. In
general, the more replications one has, the better approximation to the expectation E0

can be.36 Denote the utility of the representative household computed from the simulated
data in period t (t � 0, . . . , T − 1) of replication n (n � 1, . . . ,N) by Un ,t(R). Then the
representative household’s approximate lifetime utility in replication n (n � 1, . . . ,N) is
U≈n (R) �

∑T−1
t�0 β

tUn ,t(R), and the approximated expected utility by simulation is given by

U≈(R) � 1
N

N∑
n�1

U≈n (R) �
1
N

N∑
n�1

T−1∑
t�0

βtUn ,t(R).

The δc(R) implied from (16) with the approximated U≈(R) is denoted by δ≈c (R). In practice,
I start by generating a total of N replications of complete paths of length Td + T of the
exogenous shocks, from which the paths of all endogenous variables and the approximated
expected utility can be computed. The replications of the exogenous shocks form the base
of the simulated sample data and are fixed throughout subsequent analysis.

5.2 Preliminary welfare evaluation: How good is the baseline policy?

Now I attempt to address the first question posed earlier: How good is the baseline
monetary policy in the estimatedmodel in terms of welfare of the representative household,
and how does it compare to alternative policy schemes? I restrict alternative policy schemes
for welfare comparison, for now, to be within the class of policy schemes in which a policy
scheme may differ from the baseline scheme only in the composition of the target index of
overall inflation. In other words, the set R of monetary policy parameters to be optimized
includes ρ∗π(s), s � 1, . . . , S, while the policy smoothing parameter ρr , the strength of

35The relative truncation error for summation in the steady state is about 1.1 × 10−8 when T � 7,500.
36Unfortunately, the precision of the average as measured by its standard error decreases at the speed

ofO(1/
√

N), while the number of arithmetic operations required for computation increases at the speed ofO(N).
This observation suggests that the approximation approach considered here is at computational disadvantage.
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response to overall inflation ρ∗π, and the strength of response to the output gap ρx are fixed
at their respective baseline values. Denote the parameter set of the baseline monetary policy
by R0.

I obtain alternative policy schemes by randomly setting their parameters. I conduct
two experiments differing in how the parameters are randomly set. In the first experiment
(“random draw”), weights of sectoral inflation rates in the target inflation index are first
drawn from the uniform distribution on (0, 1) and then normalized to sum to one. The
second experiment (“random perturbation”) starts with the baseline parameter values.
Weights of sectoral inflation rates are first added with random draws from the uniform
distribution on (−0.5, 0.5) and then normalized to sum to one. For each experiment, I run
100 trials.

[Table 13 about here.]

Table 13 presentswelfare evaluation of the baselinemonetary policy and the results from
the experiments. The baseline policy R0 has δ≈c (R0) � −0.896%, implying a small welfare
gap between the estimated model with all the shocks and frictions and the steady state. I
have several observations on the results of the experiments. First, the baseline monetary
policy seems to perform fairly well in terms of welfare of the representative household. It
outperforms all the alternative schemes randomly generated in experiment 1 and 55 out
of 100 alternative schemes randomly generated in experiment 2. Second, welfare difference
across randomly generated monetary policy schemes is small, especially in experiment 2.
The cross-sectional standard deviations of δ≈c (R) are less than 20% of the baseline welfare
gap. Third, the baseline policy outperforms the monetary policy scheme under which
the central bank targets aggregate inflation, though the difference in terms of welfare (an
increase in the welfare gap by 9.7 basis points) is small.

5.3 Optimal composition of the target index of inflation

Next, I turn to the second question posed earlier: How should the central bank optimally
compose the target index of inflation from sectoral inflation rates to maximize household
welfare?

The central bank’s optimization problem. I assume that the central bank’s objective is to
maximize welfare of the representative household, possibly subject to certain constraints,
by choosing a set of parameters R, which comprises the weights of sectoral inflation rates.
Formally, the central bank’s optimization problem is

max
R

U(R),

subject to constraints on parameters in R, where R � {ρ∗π(s; R)}Ss�1.
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I consider two cases in which the constraints differ. In cases 1 the weights are constrained
between zero and one. In cases 2 the weights are not constrained by nonnegativity, which
means that the central bank is allowed to respond to inflation in a sector by reducing the
interest rate as opposed to the normal behavior of increasing the interest rate for disinflation.
The structural restriction (10) applies in all cases. Denote the set of optimal weights in case d
(d � 1, 2) by R∗d .

Results of optimization.

[Table 14 about here.]

Table 14 presents the results of numerical optimization in the two cases, conditional on
the simulated data. Observe, first of all, that welfare improvement from the baseline policy
scheme to an optimal policy scheme is very small—less than 16% of the baseline welfare
gap, suggesting that the index of overall inflation in the baseline scheme, which the Fed
might have been implicitly targeting in the sample period, or the current inflation target of
headline PCE inflation adopted by the Fed is almost indistinguishable in terms of welfare
from the optimal target index of inflation.

Nonetheless, the compositionof theoptimal target indices of inflation appears interesting.
A prominent pattern is that the inflation rates in sector 1 (food and beverages purchased
for off-premises consumption) and sector 5 (housing and utilities) are consistently assigned
large weights in the two cases, and the assigned weights are at least 95% more than the
corresponding natural ones. On the other hand, the inflation rates in sectors other than
sector 1 or sector 5 are given virtually zero weights or weights lower than the corresponding
natural ones in case 1, and four sectors are given negative weights in case 2. Based
on these observations, the central bank’s optimal behaviors seem rather unconventional.
When it is constrained by nonnegativity of sectoral weights, the central bank responds very
aggressively to inflation in a handful of sectors and remains unresponsive to inflation inmost
of the remaining sectors. When it is not constrained by nonnegativity of sectoral weights,
the central bank may take inflationary rather than disinflationary actions in response to
inflation in some sectors.

The optimal sectoral weights also contrast sharply with the baseline ones. Under the
baseline monetary policy, the central bank excludes the sectoral inflation rates in sectors 3
and 6 from the target index of overall inflation. This exclusion agrees with zero or negative
weights of the corresponding sectoral inflation rates under the optimal policy scheme in
either of the two cases. On the other hand, the optimal policy schemes mostly focus on
sectoral inflation rates in sectors 1 and 5, but the baseline policy assigns a weight seemingly
no different form the natural one to sector-1 inflation and a weight moderately larger than
the natural one to sector-5 inflation.

Discussion. When the central bank is composing the optimal inflation index to be targeted,
why does it assign large, positive weights to the inflation rates in sector 1 and sector 5? And
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why does the central assign negative weights to sectoral inflation rates in some sectors when
it is not constrained by nonnegativity of sectoral weights? Some evidence emerges as I relate
the cross-sectional difference in the optimal sectoral weights to the cross-sectional difference
in the fraction of unconditional forecast error variance of sectoral inflation explained by
aggregate shocks and to the cross-sectional difference in responsiveness of the sectoral
relative price to a monetary policy shock, and further to the cross-sectional difference in
sectoral characteristics, particularly the size and persistence of the sector-specific component
of the price markup shock and price flexibility.

Recall the discussion in Section 4.5.2. A relatively large fraction of unconditional forecast
error variance of sectoral inflation in sector 1 as well as in sector 5 is explained by non-
sector-specific, aggregate shocks, which is largely due to the relatively small sizes of the
sector-specific shock components in the two sectors. Intuitively, the inflation rates in sector 1
and sector 5 contain more information on aggregate shocks, which is helpful for the central
bank to access the state of the economy, than inflation rates in the other sectors do. Therefore,
the two sectoral inflation rates are assigned largeweights in the central bank’s optimal target
index of inflation. The weight of sector-5 inflation being larger than the weight of sector-1
inflation in case 2 may be attributed to that the sector-specific shock component in sector 5
is relatively less persistent than the sector-specific shock component in sector 1 is.

The explanation in the preceding paragraph is related to Mankiw and Reis’s (2003)
finding that a sector’s price should be assigned a higherweight in the central bank’s stability
price index if the sector’s price was more responsive to the business cycle or if the sector’s
idiosyncratic shock had a smaller variance, because the former indicated “high signal” and
the latter indicated “low noise” in the sector’s price and thus such conditions could help the
central bank extract information on the business cycle from the sector’s price. Per Mankiw
and Reis’s interpretation, the inflation rates in sector 1 and sector 5 do both have a “low
noise,” but the inflation rate in sector 5 does not seem to have a “high signal.” Mankiw
and Reis interpreted high sensitivity of a sector’s equilibrium price to the output gap as
indication of “high signal,” which was more in the sense of large impulse responses to
aggregate shocks. However, the relative price of sector 5 may not be particularly responsive
to aggregate shocks because prices in sector 5 appear relatively sticky (θp(5) � 0.873; also
see Figure 1), and thus the sector-5 inflation rate may not be that “signaling” per Mankiw
and Reis’s interpretation. Yet, sector 5 receives a large weight. I reconcile the disparity by
interpreting “high signal” from the perspective of variance decomposition: The inflation
rate in a sector has a “high signal” when aggregate shocks account for a large fraction of its
forecast errorvariance. Lowpersistence of the sector-specific component of the pricemarkup
shockmay help increase “signal” and reduce “noise” as well. With this interpretation, “high
signal” is the exact opposite of “low noise,” and both can be assessed by examining the
sectoral inflation rate’s variance decomposition and persistence of the sector-specific shock
component in the sector. On the other hand, inflation rates in sectors of which prices are
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more responsive to aggregate shocks do no necessarily have “high signals” because prices in
those sectors are also more responsive to sector-specific shocks and thus are not necessarily
more indicative of economy-wide conditions.

Inflation rates in sectors 2, 6, and 11 are assigned nontrivial negative weights in case 2.
Observe that the estimated degrees of price stickiness in the three sectors are ranked highest
among all (see the fourth column of Table 8). As a result, the signed maximum responses
of the relative prices in these sectors to a contractionary monetary policy shock are all
positive, i.e., prices in these sectors fall less than the average price level does in the face of
a contractionary monetary policy shock (see Figure 1). Since the central bank prefers high
weights for inflation rates in sector 1 and sector 5, from the perspective of inflation targeting,
the central bank may be so incentivized as to “borrow” some weights from the sectors with
the stickiest prices. Such “borrowing” may be favorable since the sectoral relative prices in
the “lending” sectors are hard to move and thus are able to tolerate some distortion (i.e.,
excessive inflation) caused by the negative weights.

The preceding explanation gives a prescription forhow the central bank shouldoptimally
adjust the sectoral weights according to sectoral price stickiness that stands in stark contrast
to the prescriptions by Aoki (2001), Bodenstein et al. (2008), and Mankiw and Reis (2003).
Aoki (2001) found that the central bank should target only the sticky-price sector in terms
of welfare when facing two sectors, one with flexible prices and another with sticky prices.
Bodenstein et al. (2008) found in a two-sector sticky-wage-and-price model with the flexible-
price sector represented by an energy sector that the optimal monetary policy was well
approximated by a dual-mandate-type policy with balanced weights on the output gap
and core inflation, and that, in the face of a transitory energy price shock, the Taylor rule
responding to a forecast of core inflation outperformed the one responding to a forecast of
headline inflation in terms of welfare. Mankiw and Reis (2003) found that prices in sectors
with more flexible prices should receive less weights in the central bank’s stability price
index, other things equal.

In Aoki’s model, the central bank aimed to eliminate the inefficiency due to price
rigidity,37 and the central bank completely ignored the flexible-price sector because the sector
did not contribute to the inefficiency caused by price rigidity. In Bodenstein et al.’s model,
energy was an input to production and the wage was sticky, so distortion of the relative
price of energy generated additional inefficiency and thus the flexible-price energy sector
could no longer be ignored. Yet, welfare loss associated with the additional inefficiency was
quantitatively small due to the small contribution of energy in production, and consequently
the optimal monetary policy was oriented towards stabilizing core inflation. Both Aoki’s
and Bodenstein et al.’s model confronted a sticky-price sector with a flexible-price sector,
and neither gave prescriptions forwhat the central bank should dowhen all prices are sticky
and sectors are heterogenous in price stickiness.

37The inefficiency due to monopolistic competition was eliminated by employment subsidies.
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The intuition Mankiw and Reis provided behind their finding was that large business
cycle fluctuationsmight generate only small pricemovements in sticky-price sectors because
prices in those sectors were hard to move, and thus the central bank wanted to offset
such dampening effect of price stickiness by assigning larger sectoral weights to sectors
with stickier prices. What Mankiw and Reis referred to as the dampening effect of price
stickiness may be explained by (13) (see the discussion in Section 3). The results in this
section, however, suggest that the central bank may not want to offset such an effect but
to exploit it to further increase the strength of responses to the sectoral inflation rates that
the central bank prefers. Note that Mankiw and Reis’s finding had an “other-things-equal”
clause. While in theoretical analysis it is possible to compare two hypothetical sectors that
differ only in one dimension, the central bank in reality is confronted with sectors that are
heterogenous in multiple dimensions. Hence applying Mankiw and Reis’s finding in the
estimatedmodel here may not be straightforward. In addition, I emphasize that the optimal
behavior of the central bank in the estimatedmodel is conditional on the assumption that the
central bank is optimizing the composition of the target index of inflation while not altering
the other aspects of the monetary policy such as the strength of output-gap targeting.38

5.4 Adjusting the strength of responses

Next, I explore whether the central bank can improve household welfare by adjusting
the strength of response to the target index of inflation or the strength of response to the
output gap. In what follows the policy smoothing parameter and the composition of the
target index of inflation remain fixed at the baseline.

[Table 15 about here.]

Table 15 demonstrates thatmore aggressive responses to overall inflation or to the output
gap can generate substantial improvement in household welfare, and that weak responses
may result in massive welfare loss. Note in particular that welfare improvement achieved
by more aggressive output-gap targeting can be much larger than welfare improvement
achievable byoptimizing the compositionof the target indexof inflationorbyveryaggressive
inflation targeting. Even amoderate increase in ρx from the baseline of ρx � 0.140 to ρx � 0.2
induces a reduction in the welfare gap by 16.6 basis points, which is about 16% larger than
the size of welfare improvement offered by moving to targeting the optimal inflation index.
Another interesting finding from Table 15 is that more aggressive responses to overall
inflation do not guarantee improved welfare. Increasing ρ∗π from 5 to 10 actually makes the
representative household considerably worse off.

38As in Erceg et al. (2000), there is a trade-off between output-gap stabilization and inflation stabilization in
the model considered here. When optimizing the composition of the target index of inflation, the central bank
is still concerned with output-gap stabilization.
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6 Concluding Remarks

In this paper, I introduce heterogenous sectors into an otherwise standard single-sector
New Keynesian DSGE model. I consider sectoral heterogeneities in the sector size, price
stickiness, price indexation, and the pricemarkup. These sectoral heterogeneities are crucial
in generating the results of this study. Future research may further expand the multisector
model to include other types of heterogeneity.

The main goal of this paper is to examine in a structural approach how the central
bank should compose a welfare-maximizing target index of inflation from sectoral inflation
rates. I find that the central bank should focus on a small subset of sectoral inflation rates
when responding to inflation to maximize household welfare and that the sectoral inflation
rates with large positive weights in the central bank’s optimal index of inflation are the
ones containing relatively more information on aggregate shocks. In addition, the central
bank may optimally assign negative weights to some sectoral inflation rates and perform
unconventional, inflationary monetary policy actions in the corresponding sectors.

I find that the baseline monetary policy in the estimated model performs fairly well in
terms of welfare and that the welfare gains achieved by moving to targeting the optimal
index of inflation are small. These findings suggest that the current inflation target adopted
by the Fed is almost indistinguishable from the optimal one in terms of welfare. On the
other hand, more aggressive targeting of the output gap can offer much larger welfare
improvement.

Another direction of future research can be to broaden the scope of the central bank’s
optimization problem to include more targets. A number of studies (e.g., Erceg et al. 2000,
Mankiw and Reis 2003) suggested targeting the nominal wage.
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Figure 1 Impulse response functions of relative prices (π̂t(s), s � 1, . . . , S), and growth of
relative prices (∆π̂t(s), s � 1, . . . , S) to a contractionary, one-standard-deviation monetary
policy shock at the posterior mode
Note. In each graph the horizontal axis is the number of quarters after the shock hits the economy and the
vertical axis is the response of the endogenous variable, i.e., percentage deviation from the steady state. The
signed maximum responses are marked with crosses.
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,
Table 1 Sectors of the consumption-good market, their average consumption expenditure shares,
and their inflation profiles

Sectoral inflationc

s Sector namea
Average consumption

expenditure shareb (ωob
s ) Mean SD

Nondurable goods 0.270d 0.45e 2.44e

1 Food and beverages purchased for off-premises
consumption (p.f.o.p.c.)

0.099 0.58 0.54

2 Clothing and footwear 0.048 −0.02 0.73
3 Gasoline and other energy goods 0.035 0.62 8.00
4 Other nondurable goodsf 0.089 0.60 0.49

Services 0.730g 0.63h 0.61h

5 Housing and utilities 0.208 0.74 0.32
6 Health care 0.166 0.93 0.57
7 Transportation services 0.038 0.60 0.59
8 Recreation services 0.041 0.74 0.37
9 Food services and accommodations 0.072 0.74 0.28
10 Financial services and insurance 0.084 0.58 1.11
11 Other servicesi 0.095 0.77 0.34
12 Final consumption expenditures of nonprofit

institutions serving households (NPISHs)
0.026 −0.08 1.27

a Sectors are identified mostly by third-level disaggregate categories underlying PCE in Table 2.3.5 of the National Income
and Product Accounts published by the US BEA, excluding those for durable goods.

b The average shares are computed as the proportions of sectoral PCE in total PCE on all nondurables and services,
averaged over the sample period of 1985Q1–2015Q4.

c Sectoral inflation rates are computed as the first differences of the logarithm of quarterly sectoral PCE price indices. Both
the means and the standard deviations are taken over the sample period of 1985Q1–2015Q4 with the respective quarterly
series.

d Sum of the corresponding items in sectors 1–4.
e Average of the corresponding items in sectors 1–4.
f This category includes pharmaceutical and other medical products; recreational items; household supplies; personal
care products; tobacco; magazines, newspapers, and stationery; and net expenditures abroad by US residents.

g Sum of the corresponding items in sectors 5–12.
h Average of the corresponding items in sectors 5–12.
i This category includes communication; education services; professional and other services; personal care and clothing
services; social services and religious activities; household maintenance; and net foreign travel.
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Table 2 Calibrated parameters

Parameter Description Value

γ Growth rate along the balanced growth path 1.0046
π Steady-state inflation rate 1.0062
1 Steady-state share of government spending in GDP 0.17
σc Inverse of intertemporal elasticity of substitution 1.25
β Subjective discount factor 0.9987
L Steady-state labor supply 1
σl Inverse of Frisch elasticity of labor supply 2
δ Depreciation rate of capital 0.025
α Exponent of capital in the production function 0.33
ψ Ratio of weighted average of sectoral fix costs to steady-state

output (ψ �
∑S

s�1 ωsΨs/y)
0.04

εw Steady-state wage markup 0.05
{εp(s)}Ss�1 Steady-state sectoral price markups 0.2
ν Inverse of intersectoral elasticity of substitution 2.5
{ωob

s }Ss�1 Observable sizes of sectors See Table 1
var(ηme,x

t ) Variances of measurement errors
xt � ∆ ln yt , ∆ ln ct , ∆ ln it , πt , πt(1), . . . , πt(S) 0.05 var(100xdata

t )
xt � ∆ ln Lt , ∆ ln wt , Rt/100 0.1 var(100xdata

t )
Note. The time unit of the model is a quarter. Other calibrated parameters include the steady states of the
(unscaled) exogenous shocks or innovations, εb

� εi
� εa

� ζ
p
� εr

� 1, and the scaling parameter ζp � 10.
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Table 3 Comparison of selected steady-state variables in the model and the data

Variable Model Dataa

Consumption–GDP ratio (c/y) 0.57 0.57b

Investment–GDP ratio (i/y) 0.26 0.26c

Capital stock–GDP ratio (k/y) 8.9 10.6d

Interest rate, annual percentage rate (100(R4 − 1)) 5.43 5.41e

Inflation, annual percentage rate (100(π4 − 1)) 2.50 3.00f

a Values in this column are sample averages over the period of 1985Q1–2008Q2 unless otherwise noted. See
the appendix for details on the sources of data and the transformations applied.

b Consumption includes PCE on nondurables and services.
c Investment includes gross private domestic investment and PCE on durables.
d Capital stock includes (net stock of) private fixed assets (nonresidential and residential), (net stock of)
consumer durable goods, and (stock of) private inventories. This value is computed with annual time series
over 1985–2007.

e The interest rate is the daily effective federal funds rate on the last business day of the preceding quarter.
f Inflation is the first difference of the logarithm of a price index measuring the overall price level of PCE on
nondurables and services. The price index is the ratio of total current-dollar PCE on nondurables and services
to total chained-dollar PCE in the two categories. Inflation rates are first computed on a quarterly basis and
averaged over the period of 1985Q1–2008Q2. The resulting average quarterly rate is then converted to the
annual percentage rate.
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Table 4 Priors and posteriors of the estimated parameters: non-sector-specific parameters

Prior distributiona Posterior distribution

M1 & M2 M1 M2

Parameter and description Typeb Mean SD Mode SD Mode SD

A. Structural parameters

h Habit parameter B 0.7 0.1 0.86 0.02 0.79 0.02
κz Curvature of utilization cost B 0.5 0.15 0.91 0.04 0.94 0.03
κi Curvature of investment adj. cost B 0.8 0.1 0.92 0.02 0.88 0.03
θw Calvo wage stickiness B 0.75 0.1 0.65 0.04 0.59 0.04
ιw Degree of wage indexation B 0.5 0.15 0.15 0.07 0.20 0.08

B. Monetary policy parameters

ρr Policy smoothing parameter B 0.75 0.1 0.72 0.04 0.57 0.05
ρπ Strength of resp. to agg. inflation (M1)c N 1.75 0.2 1.59 0.19 — —
ρ∗π Strength of overall resp. to inflation (M2)c N 1.75 0.2 — — 2.07 0.14
ρx Strength of response to output gap N 0.125 0.05 0.25 0.03 0.14 0.03

C. Persistence of shocks

ρb Risk premium B 0.5 0.2 0.22 0.09 0.17 0.08
ρi Marginal efficiency of investment B 0.5 0.2 0.87 0.03 0.80 0.04
ρa Total factor productivity B 0.5 0.2 0.98 0.01 0.98 0.01
ρw Wage markup B 0.5 0.2 0.04 0.03 0.04 0.03
ρp Price markup: common component B 0.5 0.2 0.15 0.12 0.11 0.08
ρ1 Government spending B 0.5 0.2 0.63 0.13 0.46 0.15
ρ1a Productivity on government spending B 0.5 0.2 0.35 0.04 0.31 0.04

D. Standard deviations of innovationsd

100σ̃b Risk premium IG 0.2 0.33 0.11 0.01 0.11 0.01
100σ̃i Marginal efficiency of investment IG 0.2 0.33 0.29 0.03 0.34 0.03
100σa Total factor productivity IG 0.2 0.33 0.40 0.02 0.40 0.02
100σ̃w Wage markup IG 0.2 0.33 0.41 0.03 0.42 0.03
100σ̃p Price markup: common component IG 0.2 0.33 0.34 0.10 0.28 0.06
100σ1 Government spending IG 0.2 0.33 0.12 0.02 0.11 0.02
100σr Monetary policy IG 0.2 0.33 0.29 0.02 0.28 0.02

Marginal log-likelihoode −2,035.34 −2,019.04
a Endogenous priors à la Christiano et al. (2011) used in estimation. The priors specified here are the initial priors.
b “B” stands for a beta distribution, “N” for a normal distribution, and “IG” for an inverse Gamma distribution (type 2).
c The prior is truncated at 1.0001 without redistributing the remaining density.
d A symbol with a tilde (˜) accent denotes the standard deviation of the scaled innovation. See the appendix for details
about scaling of shocks and innovations.

e Laplace approximation.
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Table 5 Priors and posteriors of the estimated parameters: sector-specific monetary policy parame-
ters (M2 only)

Prior distributiona Posterior distribution

ρ∗∗π (s) ρ∗∗π (s) ρ∗π(s)
s Sector name Typeb Mean SD Mode SD Modec SDd

Strength of responses to sectoral inflation, ρ∗∗π (s) & ρ∗π(s) (M2 only)

1 Food and beverages p.f.o.p.c. N 0.0 0.5 −0.04 0.39 0.094 0.039
2 Clothing and footwear N 0.0 0.5 0.08 0.44 0.052 0.021
3 Gasoline and other energy goods N 0.0 0.5 −0.94 0.11 0.002 0.004
4 Other nondurable goods N 0.0 0.5 0.35 0.40 0.121 0.036
5 Housing and utilities N 0.0 0.5 0.59 0.33 0.332 0.069
6 Health care N 0.0 0.5 −1.00 0.25 0.000 0.042
7 Transportation services — — — 0.84e 1.42e 0.070 0.054
8 Recreation Services N 0.0 0.5 0.18 0.49 0.048 0.020
9 Food services and accommodations N 0.0 0.5 0.38 0.48 0.100 0.035
10 Financial services and insurance N 0.0 0.5 −0.41 0.28 0.050 0.024
11 Other services N 0.0 0.5 0.08 0.44 0.103 0.042
12 Final consumption expenditures of NPISHs N 0.0 0.5 0.13 0.44 0.030 0.012

a Endogenous priors à la Christiano et al. (2011) used in estimation. The priors specified here are the initial priors.
b “N” stands for a normal distribution.
c Inferred from the corresponding posterior modes of {ρ∗∗π (s)}Ss�1.
d Inferred from the corresponding posterior standard deviations of {ρ∗∗π (s)}Ss�1.e The posterior mode of ρ∗∗π (7) is not directly estimated but inferred from posterior mode estimates of other ρ∗∗π (s) and the
restriction (10). The posterior standard deviation of ρ∗∗π (7) is inferred from the other direct estimates.
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Table 8 Comparison of estimated sectoral price stickiness at the posterior mode (M2) and
average infrequencies of price change from the micro data

Estimated (M2) Micro-dataa

s Sector name
Posterior
Mode Rankb Statistic Rank

1 Food and beverages p.f.o.p.c. 0.725 10 0.689 9
2 Clothing and footwear 0.941 2 0.692 8
3 Gasoline and other energy goods 0.417 11 0.148 11
4 Other nondurable goods 0.900 6 0.815 6
5 Housing and utilities 0.873 9 0.596 10
6 Health care 0.949 1 0.95 1
7 Transportation services 0.907 4 0.721 7
8 Recreation Services 0.893 7 0.899 3
9 Food services and accommodations 0.901 5 0.843 5
10 Financial services and insurance 0.876 8 0.921 2
11 Other services 0.925 3 0.864 4
12 Final consumption expenditures of NPISHs 0.721 —

a These are average monthly “infrequencies” of price change in the sectors, reported in Carvalho and Lee (2011,
Table 16). Carvalho and Lee matched Bils and Klenow’s (2004) micro data on the frequency of price change
to disaggregate PCE categories. Their 15-sector specification consisted of sectors matching the ones used in
this paper.

b Only the estimated sectoral price stickiness in the first 11 sectors are ranked.
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Table 9 Standard deviations of the unscaled innovations underlying the sector-specific
components of the price markup shocks and decomposition of standard deviations of the
unscaled sectoral price markup shocks at the posterior mode (M2)

Innovation components Shock components

Common Sector-specific Common Sector-specific Total

s 100 sd(ηp
t ) 100 sd(ηp

t (s)) 100 sd(ζ̂p
t ) 100 sd(ζ̂p

t (s)) 100 sd(ε̂p
t (s))

1 2.79 1.42 2.81 3.13 5.94
2 2.79 120.1 2.81 128.7 131.5
3 2.79 14.6 2.81 28.9 31.7
4 2.79 15.9 2.81 20.2 23.0
5 2.79 5.59 2.81 6.79 9.60
6 2.79 7.64 2.81 25.3 28.1
7 2.79 44.9 2.81 46.6 49.4
8 2.79 16.7 2.81 17.7 20.5
9 2.79 10.1 2.81 11.3 14.1
10 2.79 39.7 2.81 45.8 48.6
11 2.79 26.5 2.81 29.4 32.2
12 2.79 3.03 2.81 13.4 16.2

Note. The (log-linearized) unscaled sector-s (s � 1, . . . , S) price markup shock ε̂p
t (s) is the sum of a common

component, ζ̂p
t , and a sector-specific component, ζ̂p

t (s): ε̂
p
t (s) � ζ̂

p
t + ζ̂

p
t (s). The common component ζ̂p

t
follows a first-order autoregression (AR(1)) with a normally and independently distributed (NID) innovation:
ζ̂

p
t � ρp ζ̂

p
t−1 + η

p
t , η

p
t ∼ NID(0, σ2

p). Each sector-specific component ζ̂p
t (s) follows an AR(1) with an NID

innovation: ζ̂p
t (s) � ρp(s)ζ̂p

t−1(s) + η
p
t (s), η

p
t (s) ∼ NID(0, σ2

p(s)).
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Table 10 Comparison of standarddeviations of the observeddata (in percent) andstandard
deviations of the corresponding observable variables in the estimatedmodel at the posterior
mode (M2)

Data sda

Aggregates
Point

estimate
95% confidence

intervalb
Model
sdc

∆yt Growth of real GDP per capita 0.60 [0.51, 0.78] 0.64
∆ct Growth of real consumption per capita 0.42 [0.37, 0.48] 0.44
∆it Growth of real investment per capita 2.27 [1.90, 2.88] 1.93
∆Lt Growth of labor supply per capita 0.72 [0.60, 0.88] 0.82
∆wt Growth of real wage 0.87 [0.75, 1.05] 0.85
∆Rt Growth of nominal interest rate 0.34 [0.25, 0.50] 0.37
πt Aggregate inflation 0.40 [0.33, 0.57] 0.44

Sectoral inflation rates

Data sda Data sda

Point
estimate

95% confidence
intervalb

Model
sdc

Point
estimate

95% confidence
intervalb

Model
sdc

πt(1) 0.54 [0.47, 0.64] 0.61 πt(7) 0.59 [0.53, 0.70] 0.60
πt(2) 0.73 [0.65, 0.84] 0.74 πt(8) 0.37 [0.32, 0.43] 0.37
πt(3) 8.00 [6.50, 10.88] 8.51 πt(9) 0.28 [0.25, 0.31] 0.29
πt(4) 0.49 [0.42, 0.59] 0.49 πt(10) 1.11 [0.91, 1.41] 1.27
πt(5) 0.32 [0.27, 0.37] 0.33 πt(11) 0.34 [0.30, 0.38] 0.35
πt(6) 0.57 [0.51, 0.64] 0.54 πt(12) 1.27 [1.12, 1.44] 1.20

a See Section 4.1 for descriptions of the data and variable definitions. Standard deviations are computed for
the observed quarterly time series spanning 1985Q1–2015Q4.

b Bootstrapped with the bias-corrected and accelerated method.
c Unconditional standard deviations with measurement errors taken into consideration.
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î t
In
ve

st
m
en

t
0.
1

76
.9

18
.0

0.
2

0.
0

0.
0

0.
0

95
.1

0.
0

0.
0

0.
2

0.
0

0.
0

4.
4

0.
0

0.
0

0.
0

0.
0

0.
0

0.
1

L̂ t
La

bo
rs

up
pl
y

2.
0

81
.8

2.
5

5.
3

0.
4

1.
2

0.
1

93
.2

0.
2

0.
1

1.
9

0.
2

0.
2

3.
5

0.
0

0.
0

0.
0

0.
3

0.
0

0.
4

ŵ
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Table 12 Regression analysis of the cross-sectional relationship between responsiveness of
the sectoral relative price or its growth to amonetarypolicy shock and sectoral characteristics
in price flexibility or dynamic price indexation at the posterior mode (M2)

Coefficients of interestb

Dependent variable
Sample
exclusiona −θ∗p(s) ι∗p(s) R2

Response of sectoral relative price [ϕ̂t(s)]
Signed maximum [−IRFm(ϕ̂(s), ηr)] — 2.04** (0.15) 0.39** (0.12) 0.99
Cumulative [−IRFc(ϕ̂(s), ηr)] — 23.83** (7.86) 5.30 (6.32) 0.88

Response of growth of sectoral relative price [∆ϕ̂t(s)]
Signed maximum [−IRFm(∆ϕ̂(s), ηr)] — 0.98** (0.14) −0.02 (0.10) 0.97
Cumulative [−IRFc(∆ϕ̂(s), ηr)] — 0.07 (0.10) 0.02 (0.09) 0.33
Cumulative [−IRFc(∆ϕ̂(s), ηr)] 5, 7, 16 0.43** (0.21) 0.02 (0.19) 0.93

Note. The dependent variable in each regression is equivalent to the corresponding response to a one-standard-
deviation, expansionary monetary policy shock. Each regression also includes the sector size (ωs ) as a control
variable and a constant. The number of observations in each regression is 12 unless otherwise noted. The
starred variables are transformed versions of the corresponding unstarred variables with the transformation
function f (x) � ln[x/(1 − x)] applied. See the text for variable definitions.
a The sectors whose data points are excluded from the regression sample are listed.
b Bootstrapped standard errors in parentheses.
** Significant at 5%.
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Table 13 Welfare comparison between the baseline monetary policy and alternatively randomly
parameterized policy schemes

δ≈c
(percent)

Difference
from baseline

(percentage points)
δ≈c

(percent)

Difference
from baseline

(percentage points)

Baseline (R0) −0.896
Targeting
aggregate inflation

−0.994 −0.097

Experiment 1 (random draw): Experiment 2 (random perturbation):
Welfare improved in 0 out of 100 trials Welfare improved in 45 out of 100 trials

Average −1.097 −0.200 −0.901 −0.005
Median −1.043 −0.146 −0.900 −0.004
Maximum −0.907 −0.010 −0.868 0.028
Minimum −1.852 −0.956 −0.942 −0.046
SD 0.172 0.019
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Table 14 Optimal composition of the target index of inflation in the two cases

Case (d)

1 2
(constrained)a (unconstrained)b

Welfare

δ≈c (R∗d) −0.837 −0.754
δ≈c (R∗d) − δ

≈
c (R0) 0.059 0.142

Optimal parameter values

Sectoral weights ρ∗π(s; R∗d)
1 Food and beverages p.f.o.p.c. 0.511 0.566
2 Clothing and footwear 0 −0.349
3 Gasoline and other energy goods 0.010 0.010
4 Other nondurable goods 0 −0.008
5 Housing and utilities 0.406 1.230
6 Health care 0 −0.237
7 Transportation services 0 0.073
8 Recreation services 0 −0.368
9 Food services and accommodations 0 0.045
10 Financial services and insurance 0.052 0.072
11 Other services 0 −0.800
12 Final consumption expenditure of NPISHs 0.021 0.028

a The weights of sectoral inflations in the inflation index are constrained between zero and one, i.e., ρ∗π(s; R) ∈
[0, 1], s � 1, . . . , S. The sectoral weights sum to one, i.e.,

∑S
s�1 ρ

∗
π(s; R) � 1.

b The sectoral weights sum to one, i.e.,
∑S

s�1 ρ
∗
π(s; R) � 1.
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Table 15 Welfare evaluation of adjusting the strength of response to overall inflation or
the output gap at the posterior mode (M2)

δ≈c
(percent)

Difference
from baseline

(percentage points)

Baseline (ρ∗π � 2.07, ρx � 0.140) −0.896
Flexible-wage-and-price economy with the wage mark up
and the price markup shocks shut down (θw � θp(s) � 0,
εw

t � εw , εp
t (s) � ε

p(s), ∀s � 1, . . . , S, ∀t � 0, 1, . . .)

−0.120 0.776

Adjusted strength of response to overall inflation, ρ∗π
ρ∗π � 1.0001 −1.045 −0.149
ρ∗π � 1.5 −0.997 −0.100
ρ∗π � 2.5 −0.824 0.073
ρ∗π � 3 −0.776 0.121
ρ∗π � 5 −0.718 0.179
ρ∗π � 10 −0.822 0.075

Adjusted strength of response to the output gap, ρx

ρx � 0 −1.707 −0.811
ρx � 0.1 −1.053 −0.156
ρx � 0.2 −0.731 0.166
ρx � 0.5 −0.392 0.504
ρx � 1 −0.252 0.644
ρx � 10 −0.128 0.768

Note. The policy smoothing parameter (ρr ) and the sectoral weights (ρ∗∗π (s), s ,� 1, . . . , S) remain fixed at their
respective posterior modes.
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